

 The

 TABLES Memory Manager

 Reference Manual

Version 3.2

 © 1991, 2013 SPECIALIZED SOLUTIONS, INC.

 ALL RIGHTS RESERVED

 ALL RIGHTS RESERVED

No part of this publication may be reproduced, translated, or stored in a retrieval system by transmission in any form or

by any means: electronic, mechanical, photocopying, recording, or otherwise; without the prior consent in writing of the

copyright owner.

 DISCLAIMER

The information presented is subject to change. Every effort has been taken to ensure that this manual is accurate and up

to date. However, Specialized Solutions, Inc. disclaims any liability for any loss or damage resulting from the use of this

manual.

 May 26, 2013

 This edition applies to Release 3.2 of TABLES/MM

 The TABLES Memory Manager

 Reference Manual

 TABLE OF CONTENTS

1. INTRODUCTION .. 3

2. DATASPACE SETUP .. 9

OVERVIEW .. 11
CREATING DATASPACES .. 12
LIMITING TABLES IN DATASPACES ... 14
TERMINATING DATASPACES .. 15
EXAMPLES .. 15

3. ONLINE FACILITIES ... 17

OVERVIEW .. 19
TSO ONLINE FACILITY .. 20
DATASPACE UTILITY .. 21

Monitoring and Controlling a Dataspace ... 22
Dataspace Directory Panel Primary Commands ... 23

Reset Command ... 23
Compress Command ... 24
Load Command ... 24

Dataspace Directory Panel Line Commands ... 25
Table Information Panel ... 25
Listing Active Clients for a Dataspace .. 26

EFFECTIVITY DEFINITION .. 27
Maintaining Effectivity Records ... 27
Effectivity Fields .. 28

IMS/CICS ONLINE TRANSACTION FACILITY ... 29

4. BATCH UTILITIES ... 33

OVERVIEW .. 35
TMMDEFN UTILITY... 35

Executing TMMDEFN ... 36
Control Card Summary ... 37
Defining Tables ... 38
Defining Indexes ... 41
Replacing Tables, Views and Indexes... 43
Dropping Tables, Views and Indexes ... 43
Listing Tables, Views and Indexes .. 43
Commit and Rollback Processing ... 44

TMMUTIL UTILITY .. 44
Control Card Summary ... 45
Control Card Descriptions .. 46
Examples ... 49
Sample Output ... 50

TMMRPT UTILITY ... 51

5. APPLICATION PROGRAMMING INTERFACE ... 53

OVERVIEW .. 55
DATASPACE AND LOCAL MEMORY ACCESS .. 55

AUTO-LOAD MECHANISM .. 56
BYPASSING DB2 USAGE ... 56
CALLING THE API .. 57

Interface Control Area .. 58
Interface Record I/O Area .. 59

FUNCTION CODES ... 61
RETURN, RESULT AND REASON CODES ... 64
STATISTICS INFORMATION BLOCK .. 65
RETRIEVING RECORDS... 65
THE GETE FUNCTION ... 66
THE GETQ FUNCTION ... 67
PREPARING AN APPLICATION .. 70

6. TRANSIENT TABLE INTERFACE ... 71

OVERVIEW .. 73
FEATURES AND CAPABILITIES ... 73
TRANSIENT TABLE FUNCTION CODES ... 74
CALLING THE API .. 76
USING TRANSIENT TABLE FUNCTIONS .. 76
SUMMARY ... 78

7. VSAM COMPONENT .. 79

OVERVIEW .. 81
FUNCTIONS AND CAPABILITIES ... 81
USING THE VSAM COMPONENT ... 82
OTHER CHANGES ... 83
SUMMARY ... 83

APPENDICES .. 85

APPENDIX A - MESSAGES ... 87
APPENDIX B - API RESULT CODES .. 99
APPENDIX C - DATE FORMATS .. 101
APPENDIX D - TABLES/MS INTERFACE .. 102
APPENDIX E - REASON CODES ... 105

 1. INTRODUCTION

 INTRODUCTION 5

TABLES/MM Reference Manual Section 1

Introduction

The TABLES Memory Manager is a high performance, easy to use system for managing and accessing

data in memory. Its primary function is to allow all applications to very quickly and easily SEARCH for

and RETRIEVE data stored in either common memory or local memory. MVS/ESA common dataspaces

are used to allow all online and batch applications to share common data and a region's local memory can

be used for application specific data.

In most applications today, there are many files, databases, or simply lists of values that are retrieved very

often but updated infrequently or on a scheduled basis (eg. daily, weekly, etc). These types of tables are

used for a wide variety of purposes and contain information such as rates, manufacturing codes, field

validation rules, control codes, scheduling information, conversion tables, state codes, zip codes, etc. By

placing these types of tables in memory and making them easier to access, many potential benefits result:

 One of the most important is to reduce the CPU and elapsed time to access data. By using common

dataspaces or local memory, data can be accessed with considerably less CPU time and virtually no

I/O. As a result, response times and throughput can be dramatically improved, benefiting both the

system and its users.

 Another important benefit is to simplify applications. By using TABLES/MM, an application can make

a single call to the interface routine to search for and retrieve a row from any table, either in common or

local memory. No initialization calls, opens, pre-compile steps, special system gens, binds, etc., are

required. Also, since data is retrieved from memory, applications do not require any specific database

or access method processing. The data can therefore be easily migrated from one database system to

another without affecting the application. This can help to significantly reduce the programming effort

and maintenance of applications.

TABLES/MM Components

The TABLES/MM system has four main functional components. Each are very distinct in what they are

used for and by whom. This Reference Manual is broken into four additional sections that correspond to the

components as follows:

 Dataspace Setup

 Online Facilities

 Batch Utilities

 Application Programming Interface

Dataspace Setup is used for creating common dataspaces and making them available to all applications.

This will generally be done when the system is started. Once started, a dataspace is normally never

terminated unless all systems using it have ended or the system is to be shut down. Section 2 covers

Dataspace Setup, including an overview of dataspaces, the structure of TABLES/MM dataspaces, and

starting and terminating dataspaces. This section should be reviewed by anyone that needs to start and stop

or use TABLES/MM dataspaces.

The Online Facilities are used to monitor and control active dataspaces. All information about dataspaces

can be displayed, tables can be loaded, freed or browsed, and statistics and other information about the

tables is available. This will be most useful for personnel that will be controlling and monitoring the

dataspaces as well as for application groups initially setting up tables to be loaded into memory.

 INTRODUCTION 6

TABLES/MM Reference Manual Section 1

The Batch Utilities are used for defining VSAM tables, views and indexes, maintaining and reporting on

dataspaces and for testing application calls to the interface. By setting up utility jobs, dataspaces can be pre-

loaded with all required tables or reloaded at certain intervals. In addition, statistics can be generated to

monitor dataspaces on a periodic basis.

The Application Programming Interface (API) is used to read and search for data and to monitor and

control tables within a dataspace or local memory. A high performance search facility and a flexible set of

functions allow data to be easily retrieved in a variety of ways. The data can be searched by specific fields

or scanned in both forward and backward directions. In addition, a special call allows for retrieving rows

which are time sensitive based on start/stop dates. All functions and requirements for using the API are

described in Section 5.

The API is the most complex component used within TABLES/MM and the most important. It allows

applications to dramatically improve their performance and simplify table access. As depicted in the

following diagram, the API handles all data flow to and from the program. It retrieves data from the I/O

interfaces when loading tables, from dataspaces and from local memory. It sends data to the dataspaces and

local memory when loading tables and to applications when requested. Maintenance and control of local

memory, dataspaces, and I/O for loading tables is all handled internally by TABLES/MM. The applications

only requirement is to call the interface to retrieve data in the way it needs it.

 INTRODUCTION 7

TABLES/MM Reference Manual Section 1

In the diagram, arrows show where data flows from and to. While the TABLES Memory Manager can handle

the flow from many dataspaces, an application (eg. batch job, online region, etc) can only be setup to retrieve

data from one dataspace in addition to local memory.

 INTRODUCTION 8

TABLES/MM Reference Manual Section 1

Preparing to use TABLES/MM

Once the TABLES/MM product is installed, it requires very little effort to setup and use. The following

steps are a guideline of what should be done next:

(1) Based on your installation and applications, decide what and how many dataspaces are needed.

Setting standards for what dataspaces will be used and by whom, is very important to making the

system easier to use and maintain. The Dataspace Setup described in Section 2 should be reviewed

carefully.

(2) Once the dataspace requirements are defined, use the procedures defined in Section 2 to create the

dataspaces.

(3) Execute the Online Facilities to review the dataspaces to make sure they were setup and defined

correctly. Additionally, any tables that require date/time controls or sort fields can be defined at

this time. Refer to Section 3 when using the Online Facilities or use the online help tutorial.

(4) Using the Batch Definition Utility, define any VSAM tables required, indexes to be used with the

VSAM or DB2 tables, and any views to be associated with them.

(5) Setup and run the Batch Utilities to pre-load all tables into the dataspaces. This allows the

dataspaces to be fully ready for access before they are needed. The batch utilities can also be

scheduled like any production system to initially load tables, re-load tables, generate statistics or to

perform any other required function.

(6) Lastly, call the API from the applications.

Once steps 1 through 4 are completed, both the online and batch facilities can be used to monitor the

dataspaces and usage. For initially checking out the system and for testing new applications the online

facilities are faster and easier to use. Once ready for production, the batch utilities allow for automating

these tasks.

 2. DATASPACE SETUP

DATASPACE SETUP 11

TABLES/MM Reference Manual Section 2

Dataspace Setup

Overview

In order to make data accessible to all online and batch systems, TABLES/MM uses MVS/ESA Common

Dataspaces. A dataspace, like any address space or region in the system, uses standard main memory and

can be paged and swapped out in the same manner. The memory is also protected in the same manner in

that it cannot be overlaid by accident. Like address spaces, dataspaces can be up to the maximum of 2

gigabytes in size. Further, the memory in a dataspace is processed with the same set of assembler

instructions (eg, move, compare, etc) as with normal address space memory. However, to access the

memory in a dataspace or even another address space, special MVS/ESA processing, called Access Register

mode (or AR mode for short) has to be activated and used. This mode is turned on and off by special

assembler instructions and requires the use of new ESA registers, called access registers. Once setup

correctly, the standard instructions work as normal.

A dataspace has several significant differences from an address space that make them especially useful for

managing and accessing large amounts of data. These are summarized as follows:

 (1) Programs or instructions can not be executed within a dataspace. They can be stored there as

data but not executed. This makes the data in a dataspace much less likely to be adversely

affected or overlaid by erroneous programs as is the case where the data is in the same address

space.

 (2) Since MVS does not allow executing instructions in a dataspace, it does allow the full 2-

gigabytes of memory to be used. In normal address spaces, some of the memory is used by the

system nucleus and common storage areas like CSA, LPA, etc. In a dataspace, this is not true.

All memory in a dataspace from location 0 to 2 gigabytes is directly addressable making it more

efficient to allocate and maintain.

 (3) Finally, there is a special type of dataspace, called a Common Dataspace. It is special in that

MVS/ESA automatically makes it available to all address spaces in the system. This makes it

especially useful in sharing data between applications without requiring a lot of resources.

Since the common dataspace is accessible to all address spaces and requires special entries in system

control blocks, only a limited number of them can be created. As a result, there are special requirements for

creating and maintaining common dataspaces. Therefore, TABLES/MM must be installed with the correct

authority to create common dataspaces. It will then automatically take care of any system requirements

necessary to maintain them.

Dataspace Structure

To effectively and efficiently use dataspaces, it is important to know how TABLES/MM builds and

maintains them. The structure and processing is the same for all dataspaces created by the TABLES

Memory Manager.

The basic structure of a TABLES/MM dataspace can be conceptually thought of like a Partitioned Data Set

(PDS). There is a main control block that corresponds to the Volume Table of Contents (VTOC) entry for

the PDS. This describes the basic information about the dataspace and where the directory is located. Like a

PDS, the directory in a dataspace contains information for each table (eg. member) stored in the dataspace

and where it's located. As tables are loaded, directory entries are used. Unlike a PDS, once a directory entry

is used, it cannot be reused. This is to ensure stability and reliability of the data and allows statistics to be

maintained and tracked for all tables until the dataspace is terminated.

DATASPACE SETUP 12

TABLES/MM Reference Manual Section 2

As tables are loaded, space within the dataspace is used up. When tables are freed, space is left unusable in

the same way when a member of a PDS is deleted. The directory entry for the table remains, but the space it

used does not. Also, when a table is reloaded, if there is not enough free space and the table has grown, the

old area becomes unusable, as if it were freed, because the table has to be loaded into a new location.

Therefore, over time, if a lot of freeing and reloading of tables takes place, a dataspace may run out of

available memory. When this occurs, a compress of the dataspace can be done. Like a PDS compress, all

tables are moved forward in the dataspace, leaving all unused memory at the end of the dataspace and

available for use.

Unlike most PDS's, when tables are replaced (eg. reloaded) in memory, the same area can be used, allowing

tables to be reloaded without using additional memory within the dataspace. In addition, a free space value

can be specified when loading a table that allows it to be reloaded at the same location even if it has grown

in size.

Creating Dataspaces

To create a dataspace, the TMMSTART utility is executed. This program issues the request to the system to

create the dataspace, initialize it, and sets up communications to allow the programming interface to connect

to it. To be able to create a common dataspace, special authority and requirements must be met. The

following must be done for the dataspace to be created and accessed correctly:

 TMMSTART program must be APF authorized. This means it must be linked with AC=1 and the

load module must be placed in a special system library that is defined as having APF authorization.

This is normally done when the product is installed.

 The job that creates the dataspace must be made non-swappable. When an address space is

swapped out, any dataspace created by it is also swapped out. As a result, any other address space

would not be able to access it. Therefore, TMMSTART automatically sets itself to be non-

swappable.

 For a common dataspace to be always available, the job that creates it must be running at all times.

To ensure this happens, the TMMSTART utility does two things. First, it does not allow the

system to terminate it due to waiting too long. Second, after completing the dataspace initialization

and setup, it goes into a permanent wait, until an operator requests the dataspace to be terminated.

Therefore, once created, a dataspace will always be available until the operator terminates it or

cancels it.

As a result of these requirements, it is recommended that TMMSTART be executed as a started task

instead of a standard batch job. This eliminates the need for special initiators and allows for better

control by operations. However, for initial testing of dataspaces or non-production type dataspaces, a batch

job is perfectly acceptable and will work exactly the same as a started task.

DATASPACE SETUP 13

TABLES/MM Reference Manual Section 2

The JCL in figure 2-1 is the TMMSTART procedure used to create TABLES/MM dataspaces. The DD

cards and parameters used for defining the dataspace are described below.

//* ***

//* TABLES MEMORY MANAGER

//* (C) COPYRIGHT 2013 SPECIALIZED SOLUTIONS, INC.

//* ***

//* PROC: TMMSTART

//*

//* DESCRIPTION: START A TABLES/MM DATASPACE.

//* ***

//TMMSTART PROC S='*',RGN=2M, SYSOUT CLASS, REGION

// DID=00, DATASPACE ID

// SIZE=1, SIZE IN MEGABYTES

// DIR=100, DIRECTORY ENTRIES

// KEY=8, STORAGE KEY

// DESC='TMM DATASPACE', DESCRIPTION

// CNTL=NULLFILE CONTROL CARD INPUT

//*

//TMMSTART EXEC PGM=TMMSTART,REGION=&RGN,

// PARM='&DID,&SIZE,&DIR,KEY=&KEY,&DESC'

//STEPLIB DD DSN=SYS1.LINKLIB,DISP=SHR

//SYSUDUMP DD SYSOUT=&S

//CONTROL DD DISP=SHR,FREE=CLOSE,DSN=&CNTL

The DD cards used are as follows:

STEPLIB - The load library that contains the TMMSTART program. It must be defined to

the system as being APF authorized.

SYSUDUMP - Optional, and only used if an abend occurs.

CONTROL - Optional, is used to contain control card input to TMMSTART to limit which

tables can be loaded into the dataspace.

The RGN= and S= parameters are for JCL purposes and can be set to any normal value. Also, the region

size has no affect on the size of the dataspace or limits it in any way.

The other parameters used in the procedure define the specifics about each dataspace. These can be the

same or different for each dataspace created except for DID, which must always be different.

DID - This is the Dataspace ID. It is extremely important and should be set with care. It

must be two alpha-numeric characters (eg. A-Z or 1-9) and must be different for

each active dataspace. A dataspace with the ID='00', is the default dataspace.

That is, the programming interface defaults to using dataspace '00' if not told

otherwise. Therefore, all online systems and batch jobs will use it unless a

special DD card is placed in each job to use an alternate dataspace.

SIZE - This is the size of the dataspace in megabytes. The maximum value is 2000.

However, keep in mind that the larger the size, the more system resources (eg.

memory, paging space) are required.

DATASPACE SETUP 14

TABLES/MM Reference Manual Section 2

DIR - This is the number of directory entries to allow. That is the number of different

tables that can be loaded. Remember that even if a table is freed, the directory

entry remains. Generally allow for the maximum number of tables ever expected

to be loaded.

KEY - This specifies the storage key of the memory the dataspace will use. Only

KEY=8 or KEY=9 are valid. The default of KEY=8 should always be used

except when the dataspace will be used by CICS transactions running with

EXECKEY(USER). CICS transactions running in USER key require the

dataspace to use KEY=9 storage. Additionally, specific hardware that supports

Sub-system Storage Protection (SSSP) is also required to use KEY=9. If KEY=9

is used, the dataspace is still accessible to all CICS transactions (USER or CICS

key) and all batch regions as well.

DESC - This is simply a description of the dataspace. Enter up to 40 characters in single

quotes. The description is simply displayed by the online utility and not used

otherwise.

CNTL - This defines the control card input file and is optional. It is used to specify the

set of tables that can be loaded into this dataspace (See below for more

information).

Limiting Tables in Dataspaces

Any TABLES/MM dataspace can be created with a fixed, preset directory of tables that can be loaded into

it. By specifying the CNTL= parameter when starting a dataspace, the control cards in the specified dataset

are processed by TMMSTART and each table name in the order specified is placed in the directory. After

all cards are read, the size of the directory is set to not allow any additional tables to be loaded into the

particular dataspace. This can be used to limit a dataspace to a very specific set of tables to control its use

and enforce the tables that can be loaded into it.

The dataset specified must have standard 80-byte records and any block size. The control cards themselves

must be as follows:

 An asterisk (*) in column 1 denotes a comment card

 A blank card is ignored

 Table names must start in column 1 and

 The maximum table name allowed is 36 characters

The control cards do not cause the tables themselves to be loaded. The only affect is to enter the name in the

directory and fix the size of the directory. The tables must be loaded later, through the online or batch

utilities or directly by a program.

Also be aware that the table names on the control cards are not validated. Any value in columns 1 through

36 can be entered. The table is not checked for invalid characters or format errors. In addition, the table is

not checked to see if it exists. However, the only affect an invalid table name would have is to waste a

directory entry. (See Section 5 on the API for a description of the table names and specifications).

Finally, since the directory size is set based on the number of tables specified, the DIR= parameter has no

affect. It is overridden based on the input and is ignored.

DATASPACE SETUP 15

TABLES/MM Reference Manual Section 2

Terminating Dataspaces

In general, once a dataspace is started, it should not be terminated until the system is stopped or all jobs

accessing it are stopped. If a job attempts to access a dataspace that has been terminated, results are

unpredictable with a system abend likely to occur.

To stop a Dataspace, the system operator must reply correctly to the message issued when the dataspace is

started. After TMMSTART correctly initialize and makes a dataspace available, the following message is

displayed on the system console:

TMMS001R REPLY "STOP??" TO END D/S-??-JJJJJJJJ

In each case, the ?? is replaced with the dataspace id as entered for the DID= parameter on the start

command and JJJJJJJJ is the Jobname. The operator must reply as follows:

STOP??

Where the ?? must be replaced with the correct dataspace id. This is to ensure that a reply is not sent to the

wrong TMMSTART job and incorrectly terminate a dataspace in use.

Once terminated, the dataspace and all tables loaded into it are no longer available. Any application

attempting to access it will get an error code from the interface or abend.

If the wrong dataspace-id is entered in a reply, message TMMS003E is displayed, specifying an INVALID

REPLY was entered and no dataspace is terminated. Message TMMS001R is then re-displayed. If an

incorrect id was entered, simply reply again with the correct id. If the correct id was entered, but the wrong

message was responded to, just reply to the correct message.

Examples

1. To start the default dataspace with 25 megabytes of memory and allowing for 500 tables, the

following command would be issued by an operator:

S TMMSTART,SIZE=25,DIR=500

If everything was setup correctly, the reply message should appear on the console allowing the

operator to terminate dataspace with ID='00'.

2. To start a special application dataspace with ID='1A', 100 megabytes of memory and allowing for

100 tables, the following start command would be issued:

S TMMSTART,DID=1A,SIZE=100,DIR=100,DESC='Appl D/S'

As a result, the following message would appear on the system console to allow the dataspace to

be terminated:

TMMS001R REPLY "STOP1A" TO END D/S-1A-TMMSTART

The operator would then have to reply "STOP1A" to terminate this dataspace.

DATASPACE SETUP 16

TABLES/MM Reference Manual Section 2

3. To start a dataspace with a fixed set of tables and 10 megabytes, the operator would issue the

following command:

S TMMSTART,DID=1S,SIZE=10,CNTL='TMM.LIB.CNTL(SETDS1S)'

Where the CNTL file might have control cards as follows:

 *
 * TABLES TO BE FIXED IN DATASPACE WITH ID '1S'
 *
 TMM.TABLE_TEST1
 TMM.TABLE_TEST2
 TMM.TABLE_TEST3

In this case, a special dataspace is setup to allow three tables to be loaded into it and only those

three. The standard reply message would also appear on the console once the dataspace is ready.

Note: If any errors were detected in these examples, message TMMS002E would have

been displayed on the console specifying what the error was. Please refer to the

Appendix for a description and actions for this message

 3. ONLINE FACILITIES

OLINE FACILITIES 19

TABLES/MM Reference Manual Section 3

Online Facilities

Overview

The Online Facilities are used for monitoring and controlling all active TABLES/MM dataspaces and local

memory tables, and for defining effectivity for DB2 tables. There are two implementations. The first, uses

standard TSO/ISPF full-screen interfaces for displaying information, help panels, scrolling, messages, and

PF key processing. The second is an IMS/CICS online transaction that allows a subset of the TSO facility

with an additional ability to monitor and control tables in local memory for the IMS MPR or CICS region

where the transaction executes.

On TSO

The TSO Online Facility is the primary mechanism to control TABLES/MM Dataspaces. It has two main

components. The first is the Dataspace Utility. It allows all dataspaces to be controlled and monitored

interactively. It includes the following functions:

 List all active dataspaces and their descriptions

 List active clients for a dataspace

 Display current statistics and the directory for a dataspace

 Display statistics and other information for a specific table or view

 Load, Free, and Browse Tables and Views

The dataspace utility can be used to monitor such things as how much access there is to a dataspace and its

individual tables, how much space is being used, if there is any room left and other things. In addition,

tables can be checked for size and accesses, they can be periodically re-loaded or browsed as required and

monitored periodically to see what is being accessed.

The other component is Effectivity Definition. It is used to specify date control support for DB2 tables that

are maintained with start and stop dates. This allows for rows that fall within these start and stop dates (e.g.

the effective dates) to be retrieved with a single call to the API.

Note: In prior versions, effectivity definition could also be used to define the key fields or sort order for

the table. This is not recommended any more. Instead, the TMMDEFN utility should be used to

define a primary index.

In general, the dataspace utility will be used by support staff and operations personnel to monitor and

control production dataspaces. Applications personnel can also make use of it when initially setting up and

testing access to new tables with test dataspaces. The effectivity definition is generally used by application

groups when setting up a table to be loaded and accessed.

On IMS or CICS

The IMS/CICS Online Facility is a subset of the TSO one. It allows for loading, freeing and getting

statistics of tables like TSO but only for the one dataspace attached to the region. However, unlike TSO,

tables in local memory can be processed as well. In addition, tables can be listed and API functions can be

executed (eg. GETF, STGF, etc.). However, tables in memory can not be browsed and Effectivity can not

be defined.

The IMS/CICS transaction can be executed in Full-Screen mode and also in Line Mode. In full-screen

mode, it can be used to interactively monitor and control tables like the TSO facility. In line mode, it can be

used to pre-load tables automatically at CICS start-up or using automated operations procedures at IMS

start-up. Tables can be loaded into dataspaces or local memory (that is, in the IMS region or CICS region).

OLINE FACILITIES 20

TABLES/MM Reference Manual Section 3

TSO Online Facility

To access the TSO Online Facility, the TABLES/MM Primary Menu must be displayed. To get to the

primary menu do the following :

(1) Log on to TSO using your normal procedures.

(2) From TSO READY mode, or ISPF Option 6, enter the following:

 %TMM

(3) Then press the ENTER key.

The TABLES/MM Primary Menu shown below should then be displayed. Be aware that many installations

change the method to display the primary menu. Therefore, if you have problems getting to it, please check

with your local support group.

 --------------------------- TABLES/MM PRIMARY MENU ----------------------------

 OPTION ===>

 1 DATASPACE UTILITY Monitor and Control TABLES/MM Dataspaces

 2 EFFECTIVITY DEFINITION Maintain Effectivity Records for DB2 Tables

 Optionally Enter DB2 Plan and Subsystem :

 DB2 Plan ===>

 DB2 Subsystem ===>

 TABLES MEMORY MANAGER – V3.2

 (C) COPYRIGHT 2013 - SPECIALIZED SOLUTIONS, INC.

 ALL RIGHTS RESERVED

Once the primary menu is displayed, select the appropriate option to execute the Dataspace Utility or

Effectivity Definition. Pressing the END PF key (PF3/15) will exit from the TABLES/MM Online Facility.

Pressing the HELP PF key (PF1/13) will activate the help tutorial.

In addition to the option field, there are two other optional input fields, the DB2 Plan and the DB2

Subsystem. These are used to specify which DB2 system to use and the appropriate plan. These are

normally set at installation and should not be required. If there are any problems in loading tables or using

Option 2, Effectivity, check with your local support group for specify the DB2 subsystem or plan.

OLINE FACILITIES 21

TABLES/MM Reference Manual Section 3

Dataspace Utility

To activate the Dataspace Utility, enter Option 1 on the primary menu and press ENTER. The Dataspace

Utility panel shown in the next figure should be displayed. However, if there are no active dataspaces, the

primary menu remains and the message "NO ACTIVE DATASPACES" will be displayed.

------------------- TABLES/MM DATASPACE UTILITY -------------- ROW 1 TO 4 OF 4

 COMMAND ===> SCROLL ===> HALF

 ACTIVE DATASPACES:

 S - Select Dataspace to Monitor and Control

 L - List Clients Active for the Dataspace

 ID START TIME DESCRIPTION

 S 00 07 24 11.16.24 DATASPACE DEFAULT PRODUCTION

 01 07 24 11.16.32 DATASPACE APPLICATION 1

 02 07 24 11.17.01 DATASPACE APPLICATION 2

 T1 07 24 14.01.11 TESTING DATASPACE

 *********************** BOTTOM OF DATA ********************************

From the Dataspace Utility panel, you can view the current active dataspaces, select a particular dataspace

to monitor or control, list the active clients for the dataspace, press the END PF key to return to the primary

menu, or press the HELP PF key to view specific help for this panel and/or view the tutorial.

On the Dataspace Utility panel, for each active TABLES/MM dataspace, the following information is

displayed:

ID - The two character dataspace ID from the start-up JCL.

START TIME - The day and time the dataspace was started.

DESCRIPTION - The description from the start-up JCL.

If there are more dataspaces than will fit on one screen, the standard scroll PF keys can be used. The

SCROLL field can also be set to any valid ISPF value.

OLINE FACILITIES 22

TABLES/MM Reference Manual Section 3

Monitoring and Controlling a Dataspace

To select and process a particular dataspace, enter an "S" to the left of the ID on the Dataspace Utility

panel as shown in the example above and press ENTER. The Dataspace Directory panel shown in the next

figure will be displayed.

 DID: 00 ----------------- TABLES/MM DATASPACE DIRECTORY ------ ROW 1 TO 5 OF 5

 COMMAND ===> SCROLL ===> HALF

 Table Name ===>

 Free Space ===> (As a Percent, e.g. 10 = 10% free space)

 Sort Fields ===>

 Memory: Total Bytes: 5242880 Directory: Total Entries: 100

 In Use : 162809 Entries Used : 5

 Available : 5080071 Available : 95

 Table Name Load Time Accesses Bytes RecCnt RecSz

 ----------------------------- --------- -------- ------- ------ -----

 S SSI001.DB2TEST 11.17.55 1 1518 8 167

 SSI001.MS_DEFINITION 11.17.56 22 12464 22 560

 SSI001.APPL1_TBL1 11.18.05 1049 4851 123 35

 SSI001.APPL1_TBL2 11.18.22 2256 42986 356 120

 SSI001.APPL1_TBL3 11.18.41 103 96336 1045 92

 ***************************** BOTTOM OF DATA ***************************

The Dataspace Directory panel is the focal point for monitoring and controlling a specific dataspace. To

monitor a dataspace, the memory and directory statistics are displayed along with a list of directory entries.

For the current dataspace, the following information on its memory usage is displayed:

Total Bytes - This is the maximum number of bytes usable in the dataspace as set when the

dataspace was started.

In Use - This is the number of bytes currently used by tables that have been loaded and

not freed plus the space used by the dataspace control blocks and directory.

Available - This is the remaining bytes that can be used for loading new tables or re-loading

tables.

Also, the current directory status for the dataspace is displayed in the following fields:

Total Entries - This is the maximum number of tables that can be loaded into the dataspace. It is

set based on the DIR= parameter or control card input when the dataspace is

started.

Entries Used - This is the current number of entries that are in use.

Available - This is the number of new tables that can be loaded and should always be the

TOTAL ENTRIES minus the ENTRIES USED.

OLINE FACILITIES 23

TABLES/MM Reference Manual Section 3

The scrollable list of directory entries shows all tables and views that have been or are loaded in the

dataspace. For a table or view that has been freed, only the LOAD TIME (in this case, the time the FREE

was issued) and ACCESSES are shown. All other values will be zero. For each directory entry, the

following information is displayed:

Table Name - The name of the Table or View.

Load Time - The time when the table was last loaded.

Accesses - The total number of times the table has been accessed since the dataspace was

started. The count is retained even if the table is freed.

Bytes - The number of bytes used by this table in the dataspace.

RecCnt - The number of records loaded into the dataspace.

RecSz - The size in bytes of each record within the table. For a view, this is the size of

the record as returned to a program when using the API.

On the Dataspace Directory panel, a set of primary commands and a set of line commands can be used to

perform specific functions for the current dataspace. The primary commands are entered in the

COMMAND field and the line commands are entered on the appropriate line to the left of the table name.

Enter one primary command or one line command only. If more than one is entered, the primary

command will be executed and all line commands ignored. If more than one line command is entered, only

the first one is executed. Press the ENTER key to perform the selected command.

Again, as on all panels, the END PF key will return to the previous panel, in this case the primary menu.

The HELP PF key will activate the online tutorial.

Dataspace Directory Panel Primary Commands

There are three primary commands that can be entered on the Dataspace Directory panel for performing

specific functions. They are:

 RESET - Causes all information on the panel to be reset. That is, all fields are updated with the

most current values from the dataspace.

 COMPRESS - Executes the compress function for the dataspace. This will make all unusable space

available again.

 LOAD - Causes a table to be loaded or re-loaded into the dataspace. See below for additional

fields that must be entered.

Reset Command

The RESET command causes all data on the Dataspace ID panel to be refreshed. This includes all

dataspace information and directory entries. After a reset command is entered, the directory list is

repositioned so that the first table displayed before the command is the first one displayed after the

command.

Also, an automatic RESET is issued after a LOAD or COMPRESS primary command is executed or after a

FREE line command. It is not done for a Select or Browse line command.

OLINE FACILITIES 24

TABLES/MM Reference Manual Section 3

Compress Command

The COMPRESS command is used to compress the current dataspace. This is only needed if there is little

or no available memory left in the dataspace. It will also only work if there is unused space within the

dataspace. Unused space is the memory that was used by tables that were freed or reloaded into a different

location. This amount can be calculated from the information on the Dataspace ID panel as follows:

Unused Space = TOTAL-BYTES - (IN-USE + AVAILABLE)

When using compress, the dataspace is locked so that no tables can be loaded or freed while the compress is

in progress. Therefore, the compress should only be done when this is least likely to occur. Also, for large

dataspaces, a compress can take several seconds. On TSO, the address space may be swapped out while the

compress is in progress causing longer delays. This can also affect access to a table if the table is in the

process of being moved when the swap occurs. Further, a TSO session may abend causing the dataspace to

be left in a partially compressed state.

Note: It is recommended that for production Dataspaces, compresses should be done using a batch

job with a high priority and the maximum TIME parameter to ensure that it completes

successfully and quickly

Load Command

The LOAD command is used to load tables and views into the current dataspace. On the Dataspace

Directory panel, the following fields are used to load a table or view:

Table Name - Specify the name of the table or view. For a DB2 table, enter the fully qualified

name including the auth-id. For a VSAM table, enter the name as defined using

the batch definition utility (Note: the VSAM file must be pre-allocated using the

TSO ALLOCATE command).

Free Space - Enter the percentage of free space to be used when loading the table. Free space

is used to allow the table to be re-loaded at the same location if it expanded since

the last time it was loaded. This is ignored for a VIEW.

Sort Fields - Enter the field names the table is to be sorted on. After each name, an 'A' for

ascending or 'D' for descending can be optionally entered to specify the sort

order. The default is 'A'. Always separate each value by one or more blanks.

After specifying the required information, press ENTER to load the table. A message is displayed with the

results. If the load fails, you should make sure the DB2 Plan and Subsystem were correct on the Primary

Menu, that you have access to them and the DB2 table, or the VSAM file is pre-allocated.

For pre-loading many tables into one or more dataspaces, it is recommended that the batch utility be used

instead. Using control card input, many tables can be loaded into multiple dataspaces with less overhead

and when the system is less busy.

OLINE FACILITIES 25

TABLES/MM Reference Manual Section 3

Dataspace Directory Panel Line Commands

The line commands on the Dataspace Directory panel perform specific functions against a selected table or

view in the dataspace being processed. Enter one of the following commands to the left of the table name to

execute its function:

F - Free Causes the table or view to be freed from the dataspace. The data is no longer

available but the directory entry will remain.

S - Select Selects the entry to show more detailed information. Another panel with a break

down of the memory used and additional information is displayed. A sample is

shown below.

B - Browse Is used to browse the data in the table. The rows of the table are passed directly

from the dataspace to the ISPF browse facility. All processing is handled by

ISPF and all Browse commands and processing can be used. The data is browsed

in exactly the same format as a program would get it using the API, including

any re-formatting required for a view.

After completing Browse or Select, you should return to the Dataspace Directory panel. The Free command

displays a message and the Dataspace Directory panel is reset and re-displayed. Additional commands can

then be entered.

Table Information Panel

On the Dataspace Directory panel, selecting a table or view using the 'S' line command causes the Table

Information panel to be displayed. The following is an example of the panel:

 DID: 00 ------------- TABLES/MM Table Information –---------------------------

 COMMAND ===>

 Table : SSI001.DB2TEST

 Loaded at ===> 2013-05-01-11.17.55.243742

 Loaded by ===> SSI005

 Record Size ===> 167

 Record Count ===> 8

 Accesses ===> 1

 Effectivity ===> N

 Columns ===> 8

 Memory Usage: Definition ===> 182

 Indexes ===> 0

 Data ===> 1336

 Freespace ===> 0

 Total ===> 1518

This panel shows more detailed information for the table and a break down of the total memory used by the

table. After the table name and dataspace-id, the following fields are displayed:

OLINE FACILITIES 26

TABLES/MM Reference Manual Section 3

Loaded At - This is the complete timestamp when the table was last loaded. It is set when the

table is moved to the dataspace (ie. becomes available for use).

Loaded By - The userid of the person who loaded the table. It may also be the terminal id or

job name.

Record Size - Number of bytes in each record.

Record Count - Number of records loaded.

Accesses - Total accesses to this table since originally loaded.

Effectivity - Y or N specifying if this table is effectivity controlled.

Columns - The number of columns defined for this table.

The BYTES field from the Dataspace Directory panel is the total bytes used by the table or view. The

following is a breakdown of that total:

Definition - Bytes required for the table or view definition. This includes table information,

statistics, and a variable section for column information.

Indexes - The bytes required for any indexes defined for the table.

Data - The number of bytes required for the data. This should always be the RECSZ *

RECCNT. For a View, this will always be zero.

Free Space - Bytes reserved for free space when the table was loaded and extra space to align

the definitions.

Total - Sum of the above four values.

After viewing the table information, press ENTER or the END PF key to return to the Dataspace Directory

panel.

Listing Active Clients for a Dataspace

To list the active clients for a dataspace, enter an "L" to the left of the ID on the Dataspace Utility panel.

The Dataspace Client panel will be shown.

When an application, either online or batch, first calls the API, a connection is made to a Dataspace. This

connection remains until the job or region is terminated. The Dataspace Client panel simply shows all jobs

that have connected to the Dataspace that are still active.

When stopping a Dataspace, the Dataspace Client panel can be used to check if there are any jobs or

regions still connected to it. If there are, these should be checked to see if it is appropriate to stop the

dataspace.

On the Dataspace Client panel, scrolling is active if required. Press ENTER or the END PF Key to return to

the Dataspace Utility Panel.

OLINE FACILITIES 27

TABLES/MM Reference Manual Section 3

Effectivity Definition

Effectivity Definition provides a capability to access multiple versions of rows within a DB2 table in which

there is always a start date (called the Break-In date) and optionally an end date (called the Break-Out date).

The effectivity definition is stored and used during table processing.

Any table under effectivity control must have a primary or unique index defined to DB2. The break-in date

must be the last column in the index. Up to seven columns can make up the index prior to the break-in date.

To activate Effectivity Definition, enter Option 2 on the primary menu and press ENTER. A sample of the

Effectivity panel is shown below.

 --------------------- TABLES/MM - EFFECTIVITY ---------------------------

 OPTION ===>

 A - ADD Effectivity Record D - DELETE Effectivity Record

 C - CHANGE Effectivity Record R - RETRIEVE Effectivity Data

 Enter/Verify Table Name (Fully Qualified with Authorization ID):

 Table Name ===> SSI001.DB2TEST

 Enter/Verify Effectivity Control Information:

 Date Format ===> L (L-DB2 format, 8-USA Format)

 Break-In Column ===> FDATE

 Break-Out Column ===>

 Key Columns Order Key Columns Order

 ------------------ - ------------------ -

 01 FCHAR A 05

 02 FDATE A 06

 03 07

 04 08

Maintaining Effectivity Records

To maintain effectivity records, the functions Add, Update, Delete, and Retrieve can be specified. Enter the

function code and table name for all functions. If adding or updating a record, enter the control information

as well. Then press the ENTER key to perform the function.

To exit back to the primary menu, press the END PF key (PF3/15). For help information or to view the

tutorial, press the HELP PF key (PF1/13). Effectivity and the panel fields are described.

When maintaining records, keep the following things in mind:

 Always enter all required fields for the specific function before pressing the ENTER key.

 After any function completes, the data in the fields remains and can be re-used for another

function. Therefore, to update a particular record, use 'R' to retrieve the record first, change any

required information, and update it using the 'U' function. When adding similar tables, simply

change the table name and any other fields and repeat the add function.

OLINE FACILITIES 28

TABLES/MM Reference Manual Section 3

 The KEY COLUMNS and ORDER fields are automatically entered when a table is added or

updated if they are all left blank. The DB2 catalog is checked for a Primary Index or one Unique

Index. If it finds one, the columns that make up the key of the index, including the break-in date,

will be used as the key fields. These are then displayed on the panel if the function completes

normally. If there is no primary or one unique index, then the key columns and order values must

be manually entered.

Effectivity Fields

On the Effectivity Definition panel, the following fields are used to define effectivity. The table name and

break-in date are required. All other fields are optional.

Table Name - The fully qualified name of the DB2 table. It can be a DB2 table name, view

name or alias. When Adding or Updating a record, the name must exist in the

DB2 catalog in order to validate column names and the key fields. For Delete

and Retrieve, the DB2 table does not have to exist.

Date Format - This specifies the format of the break-in and break-out dates. Since DB2 allows

for installation dependant formats, one of the following must be specified:

 L - The format is YYYY-MM-DD. This is the standard DB2 default

format. This is the default if not entered.

 8 - The format is MM/DD/YYYY. This is the DB2 USA format. See

Appendix-C for additional format codes.

Break-in Col - This is the name of the column in the table that contains the break-in date field.

Its format must match the date format code specified or unpredictable results

may occur. It is always required.

Break-out Col - This is the name of the column in the table that contains the break-out date field.

It must have the same date format as the break-in date. This is optional and not

required.

Key Columns - The key columns specify the key of the table. They are automatically filled in

from the DB2 catalog if available. If entered manually, specify the column

names that make up the key of the table. The break-in date column should

always be the last column of the key.

Order - If specifying key columns, enter A for Ascending or D for Descending order of the

columns. The default is A for all fields.

Also, only define Effectivity for tables that require it. That is, when the GEFF function will be used to select

records from the table.

OLINE FACILITIES 29

TABLES/MM Reference Manual Section 3

IMS/CICS Online Transaction Facility

The IMS and CICS Online Facility can be used in two modes. In full-screen mode, it works like the TSO

Facility and allows a subset of the TSO functions. In line mode, it can be used for quick access and for

automating TABLES/MM processing.

Full-Screen Mode

The full-screen mode allows for loading, freeing and performing API functions for tables in local memory

(in the region the transaction is running in) or for tables in the Dataspace associated with the region. To

display the Load Utility panel, do the following:

 (1) Log on to IMS or CICS using your normal procedures.

 (2) Enter the following transaction code (in IMS, enter a space after it):

TMML

 (3) Then press the ENTER key to view the Load Utility panel shown below:

 -------------------------- TABLES/MM LOAD UTILITY V3.2 ------------------------

 FUNCTION ===>

 Table Name ===>

 Location of Table ===> (L-Local, D-Dataspace)

 Free Space: Amount ===>

 Type ===> (R-Records, P-Percent)

 Results:

 ===

 ===

 PFK: 3/15-Exit 5/17-List 7/19-Scroll Up 8/20-Scroll Down ENTER-Process

OLINE FACILITIES 30

TABLES/MM Reference Manual Section 3

On the Load Panel, specify a Function to perform and press ENTER. A message containing the results

will be displayed. Also, the Result Area may contain additional information depending on the function

requested. The following is a description of each field and its use:

 Function - Specify the requested function. Use LIST to display a list of tables in the

dataspace or local memory. The list will appear in the Results area and can be

scrolled. Use LOAD, FREE or any other API function (eg. GETF, CMPR, etc.)

with a valid table name. This is passed to the TMMINT API and executed. The

Result Code and any returned data will be displayed.

 Table Name - When doing an API function the table name can be entered. It is required for

most API functions. It is not used for the LIST function.

 Location of Table - Specify L for Local or D for Dataspace. For the LIST function, tables will be

listed either from local memory or a dataspace, not both. The default is D. For

API functions, this field is passed to the interface and will be processed as

described in the section about the API (refer to ICA-LOC-FLAG in the Interface

Control Area).

 Free Space - When doing a LOAD function, specify the AMOUNT of free space and the type.

For type, specify R if the amount represents Records or P if the amount is a

Percentage. For example, enter an amount of 10 and type of R to leave 10

records of free space; or enter 50 and P to leave 50% free space.

 Results: - The Result area is used to display the list of tables or results from the call to the

API. If a GET function is requested, any record will be displayed in the result

area. For a STGF (statistics) function, the information is formatted and displayed

in the results area.

On the Load Panel, the following function keys can be used:

 ENTER - Executes the specified function.

 PF3/15 - Terminates the online facility.

 PF5/17 - Causes the list of tables to be scrolled up. This is only valid after a LIST function.

 PF8/20 - Causes the list of tables to be scrolled down. This is only valid after a LIST function.

All other PF Keys are invalid and if pressed, an error message will be displayed.

OLINE FACILITIES 31

TABLES/MM Reference Manual Section 3

Line Mode

In line mode, the TMML transaction on IMS and CICS can be used as a fast way to perform a load or free

and can also be used to automate TABLES/MM functions. For example, in CICS, a sequential terminal

could be setup to execute TMML in line mode to pre-load all tables required by CICS at start-up.

The following is the format of the line mode transaction :

 TMML Function table-name {options}

where: TMML - is the transaction name. This may be different based on your location and

 standards.

 function - the function to perform. Valid functions are :

 LOAD - load the specified table.

 FREE - free the specified table.

 STGF - display some statistics about the table.

 table-name - the name of a table to load, free or get statistics.

 options - options are used to affect how the function is performed. The following can be

 specified:

 Local - process the table in local memory only. Do not use the

 dataspace associated with the region.

 Dataspace - process the table from the dataspace. (eg. load into or free

 from the dataspace).

 ###### - specify an amount of free space. This is only used when

 loading a table.

 Records - specifies that the free space amount is the number of records to

 allow for.

 Percent - specifies the free space amount is a percent of the total space

 used.

If Local or Dataspace are not specified, then the interface normally checks the dataspace first and then local

memory. This however can be affected by other things. Refer to the chapter on the API for more

information about how tables are loaded and freed and default values when calling the API.

The following are some examples:

 TMML LOAD SSI.TEST_TABLE1 DATASPACE 50 PERCENT

- This will load a table into a dataspace and allows for 50% free space.

 TMML FREE SSI.TEST_TABLE1

- This will free a table from the dataspace or local memory.

After each transaction, a one line message is displayed with the results of the function. See the Appendix on

message TMML040I for more information. The result code and possible reason and sql codes from the

function are displayed. For the STGF function, message TMML041I is displayed with some statistics if the

table is valid.

 4. BATCH UTILITIES

Batch Utilities 35

TABLES/MM Reference Manual Section 4

Batch Utilities

Overview

The TABLES/MM Batch Utilities are used for defining VSAM tables, views and indexes and for

monitoring and controlling all active dataspaces. There are three main utilities, one for definition, one for

controlling a dataspace and one for monitoring all dataspaces. They are as follows:

TMMDEFN - The TMMDEFN utility is used to define VSAM tables, views for DB2 and VSAM tables

and indexes. It is also used to list the definitions.

TMMUTIL - The TMMUTIL utility is used to setup and execute all functions supported by the

programming interface (TMMINT). This includes loading and freeing tables, compressing

dataspaces, and searching and retrieving tables. It can be used for initially loading tables

into dataspaces as well as for testing the calls used by an application.

TMMRPT - The TMMRPT utility is used for displaying and monitoring information about active

dataspaces.

TMMDEFN Utility

TMMDEFN is a utility for defining VSAM tables, simple and complex views, and indexes. By using

control card input, TMMDEFN allows tables, views and indexes to be created, replaced, deleted and listed.

While DB2 tables can be processed directly from the DB2 Catalog, VSAM tables must be defined using

TMMDEFN before they can be processed.

Views are logical representations of physical tables. They are not the same as DB2 Views. There are two

types of views. A SIMPLE view is basically an alias of a physical table. That is, it is simply another name.

It is recommended that all applications use a view name to access a table. This eliminates all dependencies

on the physical table name. A simple view is defined with no columns.

A COMPLEX view is a restructuring of a physical table. It is defined using the names of columns in the

physical table but with different format specifications. Specific columns may be included, numeric columns

may be converted to different types, and dates can be converted between different formats. The complex

view can be used to isolate an application from the physical table's structure. If a physical table is changed

to a different access method or columns are added, removed or changed, the application can be left intact by

simply adjusting the view to the new table's format.

An index, on the other hand, is only defined in relation to a physical table, not a view. The base table name

must be a DB2 cataloged table or a defined VSAM table. Indexes are used to improve performance by

allowing binary searches on alternate keys and to retrieve rows in different orders. The index is selected

dynamically based on the search criteria specified in a GET request. No application logic is required to use

an index. When an index is used, the rows are always returned in the order of the index.

After a table, view or index is defined, the TMMUTIL utility can be used to load them. A table, whether a

VSAM table defined with TMMDEFN or a DB2 cataloged table, must be loaded explicitly. When the table

is loaded, any indexes defined for that table are built automatically. Indexes can not be specified when using

TMMUTIL. Once defined for a table, they are always built in memory when the table is loaded.

Batch Utilities 36

TABLES/MM Reference Manual Section 4

Like tables, views must be explicitly loaded. However, no data is actually loaded. For a simple view, only

an entry in the dataspace directory is used. For a complex view, in addition to the directory entry, the view

definition is also stored in the dataspace. In either case, the view's directory entry is setup to point to its base

table's directory entry. Therefore, the base table for a view must always be loaded first.

Executing TMMDEFN

While TMMDEFN is a batch utility, it can be executed in batch using JCL or from TSO using supplied

commands. To execute in batch, the following sample JCL can be used:

// JOB

//TMM EXEC TMMDEFN
control cards...
/*

Use your standard job card and enter the TMMDEFN control cards after the EXEC statement. Then submit

the job for processing. The results are printed to a SYSOUT DD card specified in the TMMDEFN JCL

procedure.

To execute the TMMDEFN proc, no parameters are required. However, the following parameters can be

overridden if necessary:

S= Specify the print class for the SYSOUT DD card. The default is '*' which causes

the MSGCLASS on the job card to be used.

RGN= This is the region size. A value of 2M is sufficient.

TMMLOAD= Specify the name of the load library that contains the TABLES/MM load

modules. This is normally set in the procedure during installation.

DB2LOAD= This is the load library that contains the DB2 modules. Again, this is usually set

during installation.

DB2SSID= This is ID of the DB2 subsystem that will be used. Only one DB2 subsystem can

be used during the job. The default value is set during installation.

DB2PLAN= This is the name of the DB2 plan used by TABLES/MM. The user submitting

the job must have execute authority to it. The plan name must be set at

installation time and should not normally be changed.

Batch Utilities 37

TABLES/MM Reference Manual Section 4

In addition to executing TMMDEFN in batch, there are two commands that can be used to execute it

directly on TSO without the need to submit a job. The first command is entered in TSO READY mode or

from ISPF Option 6 and is entered as follows:

 %TMMDEFN DA(dataset)

where dataset is the name of a file that contains the control cards to be input to TMMDEFN. To enter the

control cards directly from the terminal instead of a file, enter the word TERMINAL instead of a dataset

name. The output results from TMMDEFN are displayed using ISPF Browse (if running under ISPF)

otherwise they are sent to sysout file and are printed.

An even easier way to execute TMMDEFN is to use ISPF edit on a dataset that contains TMMDEFN

control cards. While in edit, the following command can be used to pass the control cards directly to

TMMDEFN:

#TMMDEFN

This performs the same function as %TMMDEFN except that the dataset name is automatically set from the

file being edited and the output is always displayed using ISPF Browse.

Also, please be aware that when using #TMMDEFN, the dataset or member being edited is automatically

saved if any changes were made. Therefore, if you do not want any changes to be permanent, a temporary

file or member should be used instead.

Control Card Summary

No matter which method is used to execute TMMDEFN, the control card input always has the same format.

The following specifications should be used for the control card input :

 Only columns 1 to 72 are scanned. Columns 73 to 80 are ignored.

 Input is free form (eg. parameters can start in any column).

 Parameters are separated by 1 or more blanks.

 Cards cannot be continued. All parameters must be on one card.

 Parameters shown in brackets below (eg. {...}) are optional.

 Multiple parameters shown separated by slashes means only one of the values can be entered.

 Keyword parameters (eg. TYPE(..)) must not have any blanks before or between the parentheses.

 Parameters in capital letters must be entered as is or can be abbreviated to the first 3 letters in most

cases.

 Comment cards can be placed anywhere in the input by placing an asterisk (*) or double dashes

(--) in column 1. These cards are ignored and not listed in the output.

Batch Utilities 38

TABLES/MM Reference Manual Section 4

The following tables summarize the control cards and possible parameters. Table 4-1 shows the primary

function cards. One of these must start each function and may be followed by one or more secondary cards

shown in Table 4-2.

 Function

 Parameters

 REPLACE

 CREATE

 DROP

 INDEX #nn {FROM/FOR/TO/ON} tblname {UNIQUE} {PRIMARY}

 LIST

 INDEX {FROM/FOR/TO/ON} tblname {NOCOLUMNS}

 REPLACE

 CREATE

 DROP

 VIEW viewname {FROM/FOR/TO/ON} tblname

 LIST

 VIEW viewname {NOCOLUMNS}

 REPLACE

 CREATE

 DROP

 TABLE tblname

 LIST

 TABLE tblname {NOCOLUMNS}

 COMMIT

Table 4-1 Primary Function Cards

 Function

 Parameters

 COLUMN

 colname {ASC/DESC}

 COLUMN

 colname {type(len{,decpos})} {FORMAT(F)}

 COPY

 ASM/COBOL mbrname {{FROM} ddname}

Table 4-2 Secondary Cards

Defining Tables

In Version 2.1 of TABLES/MM, the only tables that can be defined are VSAM tables. DB2 tables are

automatically processed from the DB2 catalog. To define a table, use the CREATE statement shown below:

CREATE TABLE tblname

Where tblname - is the name of the VSAM table. It must be in the format

VSAM.ddname. The 'VSAM.' is required as shown and ddname

is the 1 to 8 character ddname used to read the VSAM table.

When loading a VSAM table, the dataset must be allocated to the

ddname specified or defined to CICS in the FCT.

Batch Utilities 39

TABLES/MM Reference Manual Section 4

After the CREATE statement, the structure of the table must be defined using COLUMN statements or a COPY

statement. In Table 4-2, there are two formats for the COLUMN statement. The first is for use with indexes, and

the second for tables, is shown below:

COLUMN colname {type(len{,decpos})} {FORMAT(f)}

Where colname - is the name of a column. It can be 1-30 characters.

type - is the type of column and can be one of the following:

 CH - Character or Display Data

 PA - Packed Decimal Numeric Data

 BI - Binary Numeric Data

 NU - Zoned Numeric Data

len - is the length of the field in bytes.

decpos - is the number of implied decimal positions. Only valid for

numeric data.

f - is a format code for date fields. Specify one of the date format

codes shown in Appendix-C. Only specify a date format for

character columns.

Notes: The type and length are required except when using a COPY statement.

In addition to the COLUMN statement, the columns can be defined by using a COPY statement. COPY allows a

PDS member containing Assembler or COBOL field definitions to be used to define the table. In addition,

COLUMN statements can be entered after the COPY statement to override the field definitions (eg. to add

DATE specifications). The COPY statement has the following format:

COPY ASM/COB mbrname {{FROM} ddname}

Where ASM/COB - is the type of copybook.

mbrname - is the member name to include.

ddname - is the ddname of the library to use to read the member from. This

defaults to COPYLIB.

Notes: - The copybook, whether Assembler or COBOL, must not have any syntax

errors or unpredictable results may occur.

 - The COPY statement MUST be the first card after the primary function

card and only one is allowed per CREATE/REPLACE.

- If any COLUMN cards follow the COPY, they are used to OVERRIDE

information in the copybook. Therefore, the column name must match a

name in the copybook.

The following example is a set of control cards used to define a table:

--
-- CREATE A VSAM TABLE DEFINITION USING A COBOL COPYBOOK
--
 CREATE TABLE VSAM.RATETAB
 COPY COBOL RATETAB FROM SYSLIB
 COL RT-EFF-DATE FORMAT(1)

Batch Utilities 40

TABLES/MM Reference Manual Section 4

Defining Views

Views are defined like tables with a few differences. A view requires a base table name. That is, the table the

view is associated with. The base table must exist and must be a DB2 cataloged table or a VSAM table

previously defined. In addition, views can have no columns (eg. a simple view) that is used as an alias name, or

as many columns as the base table (a complex view), one used to reformat the rows in the base table. The

reformat of the data only takes place when retrieving data from the view. To define a view, use the following

statement:

CREATE VIEW viewname {FOR/FROM/TO/ON} tblname

Where viewname - is the name of the view to create. This is a 1-36 character name

that will be passed to the API to retrieve rows from the table.

 tblname - is the name of the base table from which the rows are actually

retrieved. This must be a DB2 cataloged table or VSAM table

previously defined.

If this is a simple view, then no column statements are required. If this is a complex view, column statements are

required to define the structure of the view. The column statement for the view has the same format as for

defining a table but work differently. Each column statement specifies a column from the base table to be part of

the view. All or some of the base table columns can be defined in the view. In addition, the type and format of

the column represent the specifications the column is to have in this view only. If they are different from the

base table column, then reformatting will take place when a row is retrieved for this view. If they are the same,

the data is moved as is. The type and format are optional and if not specified, the base table column type and

format are used.

COLUMN colname {type(len{,decpos})} {FORMAT(f)}

Where colname - is the name of a column. The column name must exist in the base

table.

type - is the type this column is to have in this view and can be one of

the following:

 CH - Character or Display Data

 PA - Packed Decimal Numeric Data

 BI - Binary Numeric Data

 NU - Zoned Numeric Data

len - is the length of the field in bytes for this view.

decpos - is the number of implied decimal positions. Only valid for

numeric data.

f - is the date format code for this view. If different from the base

table format, the date is reformatted when the row is returned on

GET requests. Specify one of the date format codes as shown in

Appendix-C. Only specify a format when the base table column

is also a date column.

Notes: When simply using a subset of columns, just specify the column name. All

specifications are defaulted from the base table columns.

Batch Utilities 41

TABLES/MM Reference Manual Section 4

Using the table created in the previous example, we can define views using the following:

**
** SIMPLE VIEW
**
 CREATE VIEW RATE-TABLE FOR VSAM.RATETAB
**
** COMPLEX VIEW
**
 CREATE VIEW RT-VIEW FOR VSAM.RATETAB
 COL RT-CODE
 COL RT-RATE-AMT PACKED(4,2)
 COL RT-EFF-DATE FORMAT(L)

Defining Indexes

Indexes are used to efficiently search through the tables in memory. By defining one or more indexes, a binary

search can be used to search a table with significant benefits. If no index is defined, then all searches are

sequential. This is true for DB2 or VSAM.

There are two types of indexes. A PRIMARY index and a SECONDARY index (the default). A Primary index

defines the order of the rows as they are stored in memory. For a VSAM table, the primary index must be

defined as the columns that make up the key field as defined for the VSAM KSDS itself. For a DB2 table, the

PRIMARY index can be made up of any columns in the DB2 table and is used to order the rows when loaded

into memory. A primary index uses a small amount of additional memory when the table is loaded.

A secondary index is used to define an alternate search path for the table. When retrieving rows and the search

criteria specifies the columns in a secondary index, it will be used for searching and retrieving rows instead of

any primary index. A secondary index is built dynamically when a table is loaded. It requires 4 bytes of memory

for each row in the table and requires sorting the table each time it is loaded. Therefore, secondary indexes use

additional memory and resources and should be defined with care.

Overall, while indexes are never required, it is recommended that all tables have at least a primary index

for performance reasons. If a table is searched using different keys, secondary indexes may reduce CPU

utilization at the expense of additional memory. Their use should be dictated by performance reasons.

Batch Utilities 42

TABLES/MM Reference Manual Section 4

To create indexes, use the following statements:

CREATE INDEX #nn {FOR/FROM/TO/ON} tblname

{UNIQUE} {PRIMARY}

Where #nn - is the index id. The (#) is required in all cases. The nn is the

index number to create. It must be a 1 or 2 digit number from 0

to 99. If not specified, the next number available is assigned.

Indexes are built and used in the order of the id, not on the order

they are created.

 tblname - is the name of the base table to have an index. This must be a

DB2 cataloged table or VSAM table previously defined.

 UNIQUE - an optional keyword. If specified, it defines this index as having

all unique keys. If an index will not have any duplicate entries,

UNIQUE should be specified to improve performance. It should

not be specified if duplicates are possible otherwise results are

unpredictable.

 PRIMARY - an optional keyword. If specified, it defines this index as the

primary index. This means the actual rows of the table are stored

in memory in the order specified by this index. For a VSAM

table this must specify the fields that make up the physical key of

the VSAM dataset. For a DB2 table, the rows will be ordered on

the columns specified when the table is read. The first index

based on the ID number with the PRIMARY keyword is the one

used as the primary index.

After the CREATE statement, the columns that make up the key of the index must be specified. In Table 4-2,

the first COLUMN statement is used to define the key fields. This is basically the same as specifying the

columns for a table or view, but instead of type and format, just the ordering needs to be specified as shown

below:

COLUMN colname {ASC/DESC}

Where colname - is the name of a column that is defined in the table this index is

for.

ASC/DESC - specifies that the column is sorted in ASCending or DESCending

order. Ascending is the default.

Currently, a maximum of 16 columns can make up the key of an index. Any type of column can be part of a key

with the exception that a date column (one with a FORMAT specified) can only be of character or numeric type.

That is, a date column that is PACKED or BINARY, cannot be part of the key unless it is in century-year-

month-day format.

Using the table created in the previous example, we can define an index using the following:

--
-- PRIMARY INDEX
--
 CREATE INDEX # FOR VSAM.RATETAB PRIM UNIQ
 COL RT-CODE

Batch Utilities 43

TABLES/MM Reference Manual Section 4

Replacing Tables, Views and Indexes

To replace an existing entry, simply change CREATE to REPLACE. All other parameters remain the same. The

replace is performed as if a DROP and then a CREATE were performed. In the case of indexes, the index ID

number is required.

Dropping Tables, Views and Indexes

To delete an entry, use the DROP function for the table view or index. All parameters are the same and all can

be specified. For indexes, the ID number is required and the optional parameters are ignored. For a view, the

base table name is ignored if specified.

After the DROP statement, no secondary cards (eg. ones shown in Table 4-2) are allowed. The DROP will fail if

any are found.

When dropping a table, only the table definition is deleted. Any views or indexes associated with the table are

not deleted. Therefore, any views and indexes must be explicitly deleted using a separate DROP statement.

Listing Tables, Views and Indexes

To list entries, the LIST statement can be used for tables, views or indexes. Specify LIST followed by the object

type to be listed as shown in Table 4-1. For indexes, all those defined for the selected table or tables are listed

(specific ones cannot be listed).

When listing entries, the table name or view name specified can have wild card characters. The name is passed

to DB2 using a LIKE function. All entries which match the name are listed. Specifying NOCOLUMNS will

limit the output to the basic information. If not specified, all column information for the tables, views or indexes

is listed as well.

The following examples, demonstrate LISTing different definitions:

-- List a table with its columns
--
 LIST TABLE VSAM.RATETAB
--
-- List all views defined but do not list their columns
-- (Note the use of '%' as a wildcard character)
--
 LIST VIEWS % NOCOLUMNS

--
-- List all indexes for a table but not its columns
--
 LIST INDEXES FOR VSAM.RATETAB NOC

Batch Utilities 44

TABLES/MM Reference Manual Section 4

Commit and Rollback Processing

If an error occurs during processing of any statements, TMMDEFN will automatically issue a DB2 Rollback

request before terminating. As a result, all updates done during the job are removed. This is to insure that no

incorrect definitions will be left in the TABLES/MM definition database (eg. the MS_DEFINITION DB2

table). In this case, simply fix the control cards that were in error, and execute TMMDEFN using all the control

cards again.

This process can be over-ridden by using the COMMIT control card. After all secondary control cards for a

function, COMMIT can be specified to cause all updates up to that point to be made permanent. All functions

prior to the COMMIT control card will be committed.

If an error occurs in a function after a commit has been specified, only updates after the last commit will be

removed. Therefore, when re-running the job, only those functions that were roll-backed should be re-entered.

Functions that were committed may cause errors if re-entered again.

TMMUTIL Utility

TMMUTIL is a utility for setting up the input parameters and executing functions supported by the

programming interface. By using control card input, TMMUTIL allows all functions and processing to be

performed without any programming. This makes it very easy to automate setup and control of dataspaces

without the need for user written programs. It can also help in application testing by simulating the calls made

by a program and the results from those calls.

// JOB
//TMM EXEC TMMUTIL
control cards...
/*

Like TMMDEFN, TMMUTIL can be executed in batch using JCL or from TSO using supplied commands. To

execute it in batch, the following sample JCL can be used:

Use your standard job card and enter the TMMUTIL control cards after the EXEC statement. Then submit the

job for processing. The results are printed to a SYSOUT DD card specified in the TMMUTIL JCL procedure.

To execute the TMMUTIL proc, no parameters are required. However, the following parameters can be

overridden if necessary:

S= Specify the print class for the SYSOUT DD card. The default is '*' which causes the

MSGCLASS on the job card to be used.

RGN= This is the region size. A value of 2M is sufficient.

TMMLOAD= Specify the name of the load library that contains the TABLES/MM load modules.

This is normally set in the procedure during installation.

DB2LOAD= This is the load library that contains the DB2 modules. Again, this is usually set

during installation.

DB2SSID= This is ID of the DB2 subsystem that will be used if any DB2 tables are loaded.

Only one DB2 subsystem can be used during the job. The default value is set during

installation.

Batch Utilities 45

TABLES/MM Reference Manual Section 4

DB2PLAN= This is the name of the DB2 plan used by TABLES/MM. If DB2 tables are loaded,

the user submitting the job must have execute authority to it. The plan name must be

set at installation time and should not normally be changed.

In addition to executing TMMUTIL in batch, there are two commands that can be used to execute it directly on

TSO without the need to submit a job. The first command is entered in TSO READY mode or from ISPF

Option 6 and is entered as follows:

 %TMMUTIL DA(dataset)

where dataset is the name of a file that contains the control cards to be input to TMMUTIL. To enter the

control cards directly from the terminal instead of a file, enter the word TERMINAL instead of a dataset name.

The output results from TMMUTIL are displayed using ISPF Browse (if running under ISPF) otherwise they

are sent to sysout file and are printed.

An even easier way to execute TMMUTIL is to use ISPF edit on a dataset that contains TMMUTIL control

cards. While in edit, the following command can be used to pass the control cards directly to TMMUTIL:

#TMMUTIL

This performs the same function as %TMMUTIL except that the dataset name is automatically set from the file

being edited and the output is always displayed using ISPF Browse.

Also, please be aware that when using #TMMUTIL, the dataset or member being edited is automatically saved

if any changes were made. Therefore, if you do not want any changes to be permanent, a temporary file or

member should be used instead.

Control Card Summary

No matter which method is used to execute TMMUTIL, the control card input is always the same format. The

following specifications should be used for the control card input :

 All control cards start with a 1 to 4 character control code

 The first parameter must start in column 5

 Separate multiple parameters by at least 1 blank

 Blank cards are ignored

 Asterisk (*) in column 1 denotes a comment card

 Control cards cannot be continued

 Uppercase ONLY is allowed, except for values on the DATA control card

 Input record size must be 80 bytes

 Sequence numbers in columns 73 - 80 are ignored

Batch Utilities 46

TABLES/MM Reference Manual Section 4

The following table summarizes the control cards, possible parameters and a short description of each code.

 Code

 Parameters

Description

 ABND

 ON/OFF

Abend at end if any errors

 DATA

 Pos Type Len Value

Place data in the record

 DCPU

 ON/OFF

Display CPU time

 DID

 Dataspace-ID

Set dataspace to use

 DISP

 Len

Set length of output line

 ECHO

 ON/OFF

Display input and results

 FSPC

 Percent

Set free space percent

 FUNC

 Code Repeat-Count

Execute interface function

 HEX

 ON/OFF

Display record in Hex

 SFLD

 Col-Name A/D

Set sort field and order

 SIZE

 Size/SET

Set size of record to display

 TABL

 Table-Name

Set table name to process

 WHER

 Data

Where Clause

Table 4-3

Control Card Descriptions

For each control code shown in Table 4-1, a detailed description is given along with the possible parameters and

values for it. The default value for each parameter is specified when appropriate.

ABND - Causes the job to abend with a U0008 abend if any errors are detected in the control card or

function results. This is primarily for operations to make it easier to detect incorrect results.

Possible values are:

 OFF - Do not abend (the default).

ON - Abend if errors are detected.

blank - Toggle the value between on and off.

DATA - Places a data value into the record area. The record is used for certain functions like GETF to

select rows with certain values. This can be used, for example, to display rows with a specific

key value or to test application logic. As many data cards can be used as required to set one

or all fields in the record. After a FUNC control card, the record area is always reset to

blanks. The 4 parameters below are all required:

 Pos - Specifies the starting position in the record to place the value (the first

position is 1).

Batch Utilities 47

TABLES/MM Reference Manual Section 4

Type - The type of data to place in the record as follows:

 C - Character data, value is moved as is.

 P - Packed Decimal, value must be a number and is converted to a

packed field.

 B - Binary, value must be a number and is converted to binary.

Len - The length of a character field to move or the size of packed or binary

field to create. For character fields, it should be less than or equal to the

field size and for packed and binary, it should always be equal to the field

size.

Value - The data to place in the record. The first non-blank character after the

length is the first character moved or converted. For packed and binary

values, the data must be a valid number but should not include a decimal

point.

DCPU - Displays the CPU time used in microseconds after each FUNC request. The default is off.

ON - Turns CPU display on.

OFF - Turns CPU display off.

blank - Toggles the value between on and off.

DID - Specifies which dataspace to process. If not specified at all, the default dataspace (ie. ID=00)

is used. If a TBLDID?? DD card is specified in the JCL or allocated on TSO, the ID from it

(the ??) is used as the dataspace to process and cannot be overridden with the DID control

card.

 Dataspace-ID - The 2-character ID of an active dataspace to process or blanks. If

blanks are specified, then only local memory is used and all

dataspace processing is bypassed (useful for testing calls when

no dataspaces are active).

DISP - Sets the size of the output display line when displaying table records as a result of retrieval

functions. The default size is 75.

 Len - The size of the output display line.

ECHO - Turns the echoing of display cards and results either on or off. The default is on. Error results

will always be displayed. Valid values are:

ON - Turns echo on.

OFF - Turns echo off.

blank - Toggles the value between on and off.

FSPC - Sets the free space percent value passed to the interface. This is only used when loading a

table. A value of 10 for a table of 100 records would cause space to be allocated in the

dataspace for 110 records. If set, then the value is passed to the interface for all load

functions until changed. A value of blank or zero is valid. The default is zero.

 Percent - The amount of free space to leave as a percentage of total

records.

Batch Utilities 48

TABLES/MM Reference Manual Section 4

FUNC - Causes the programming interface to be executed for the specified function code using values

previously set. Parameters are as follows:

 Code - The programming interface function to execute (eg. LOAD,

GETF, GETN, GETS, FREE, ETC). This value is required as

there is no default.

Repeat count - A numeric value specifying how many times to repeat the

function. For example, to display 10 records, specify 'GETS 10'.

The Get Sequential function is executed 10 times or until the

END of data is reached. The repeat count defaults to 1.

HEX - Set to display records in HEX mode. Can be set to the following:

 OFF - Do not display hex (the default).

ON - Displays the records in hex mode.

blank - Toggle hex mode between on and off.

SFLD - Specify a column the table is to be sorted on. Enter only one column name per card

but use as many cards as necessary. Enter the cards in order of importance (major sort field

first, etc.). The sort fields are only used with the table load function. The default is no sort

fields. Also, after any FUNC card is processed, the sort field array is set to null. Therefore,

they should only be specified immediately before the "FUNC LOAD" card for the table they

pertain to. Parameters are:

 Column- Name of a column in the table to sort on. It is required.

A/D - Enter A for ascending or D for descending. The default is A.

SIZE - Sets the size of the record area to display for any record returned from a FUNC control card.

Specifying a small value can be used to display just the first part of a record. The default is to

display the first 75 bytes of the record area. If this value is larger the DISP value, the record

is printed on multiple lines.

 Size - Specify the size of the record to display or enter 'SET' to have the

size automatically set to the record size of the table being

processed.

TABL - Specify the table name to process. This must be the complete DB2 table name (eg. Include

the AUTH-ID). The table name is required for all functions.

 Name - The fully qualified DB2 table name. This can be the table name,

a view name or DB2 alias name.

WHER - Specify a where clause to be used only with the LODW function. It must start with

'WHERE' and the data must be in columns 6 through 72. Enter as many statements as

necessary to create the where clause. The data from each WHER statement is appended to the

data of any previous one. Use WHER with no data to clear the where statement before a

second LODW request. An invalid where clause will cause a TBLINVLD result code on the

LODW request with an appropriate reason and SQL code.

 Data - The where clause SQL to use with the LODW request to

selectively load rows from a DB2 table. It must be valid SQL,

can only be a where clause and must be correct for the table

being loaded.

Batch Utilities 49

TABLES/MM Reference Manual Section 4

Examples

 1. This example simply loads three user tables into Dataspace U1. The third table is loaded with

only selected records.

DID U1
TABL USER01.TABLE_0001A
FUNC LOAD
TABL USER01.TABLE_0002A
FUNC LOAD
TABL USER01.TABLE_0003A

WHER WHERE DIV = '01' AND
WHER AND ACCT = 'GL'
FUNC LODW

 2. This example displays all employee table records with a value of 'SMITH' in the last name

field (that starts in column 21). The GETF function gets the first occurrence and the GETN

gets up to the next 99 occurrences or until no more are found. Dataspace with ID=00 is

searched unless a TBLDIDxx card is found in the JCL. Display is turned off except for the

records (ECHO ON/OFF) and the first 100 bytes of each record are displayed (SIZE 100).

The records are displayed in hex and EBCDIC (HEX ON).

ECHO OFF
TABL APPL.EMPLOYEE_TABLE
DATA 21 C 5 SMITH
SIZE 100
HEX ON
ECHO ON
FUNC GETF
FUNC GETN 99

 3. This example loads two tables into different dataspaces and displays the statistics for them.

DID 1A
TABL RATE.CODE_RATE_001

FUNC LOAD
FUNC STGF
DID 1B
TABL RPT.TITLE_TABLE
FUNC LOAD
FUNC STGF

Batch Utilities 50

TABLES/MM Reference Manual Section 4

Sample Output

The following is a sample of the output from TMMUTIL for the first example above. For each card read, it is

displayed with the results. For the FUNC control card, the record area is also displayed if any record is returned.

 TABLES/MM INTERFACE UTILITY - STARTED
 ===

 CONTROL CARD: DID U1

 DATASPACE ID CHANGED: U1

 CONTROL CARD: TABL USER01.TABLE_0001A

 TABLE NAME TO PROCESS: USER01.TABLE_0001A
 TABLE TYPE IS SET TO : DB2

 CONTROL CARD: FUNC LOAD

 TMM INTERFACE RESULT = OK REPEAT COUNT:00001
 RECORD AREA: *** IS ALL SPACES ***

 !
 !
 !

 CONTROL CARD: TABL USER01.TABLE_0003A

 TABLE NAME TO PROCESS: USER01.TABLE_0003A
 TABLE TYPE IS SET TO : DB2

 CONTROL CARD: FUNC LOAD

 TMM INTERFACE RESULT = OK REPEAT COUNT:00001
 RECORD AREA: *** IS ALL SPACES ***

 ===
 TABLES/MM INTERFACE UTILITY - ENDED, RC = 00000
 ===

Batch Utilities 51

TABLES/MM Reference Manual Section 4

TMMRPT Utility

TMMRPT is a batch utility to generate a report on all currently active dataspaces. It will list all active

dataspaces with their memory and directory usage. Also, all used directory entries are listed showing the tables

and associated information. TMMRPT is very useful to run on a nightly basis or immediately before all

dataspaces are stopped to generate a listing of statistics showing the use and accesses to all dataspaces. This can

be used to gauge the benefits of using TABLES/MM and also to monitor and control tables that may not be

required or beneficial to keep in memory.

To execute TMMRPT, the following JCL can be used:

// JOB

//TMM EXEC TMMRPT

The output from TMMRPT is written to the SYSOUT DD card. As for TMMUTIL, the S= parameter can be

specified to override the sysout class. The default is '*' which means the MSGCLASS value from the job card is

used. The following is a sample of the output:

 DATE: May 1, 2013 TABLES MEMORY MANAGER PAGE 1
 DID: 00 DATASPACE REPORT

 ===
 | DESCRIPTION: APPLICATION DATASPACE STARTED: 2013-05-01-12.31.44 |
 ===
 | |
 | MEMORY: TOTAL BYTES = 2097152 DIRECTORY: TOTAL ENTRIES = 50 |
 | IN USE = 550132 ENTRIES USED = 2 |
 | AVAILABLE = 1547020 AVAILABLE = 48 |
 | |
 ===

 DIRECTORY ENTRY LISTING:

 TABLE NAME TOT-BYTES ACCESSES LOAD TIMESTAMP LOAD-BY RECSZ REC-CNT COLS EFF
 ---------------- --------- -------- --------------------- ------- ----- ------- ---- ---
 SSI001_DB2TEST 21432 99 2013-05-01-14.44.01 SSI005 123 21 8 YES
 SSI005_ANPGM1_T1 520100 201 2013-05-01-15.03.22 SSI001 100 5201 11 NO

 ===
 DATASPACE SUMMARY STATISTICS :
 ACTIVE TABLES => 2
 ACTIVE VIEWS => 0
 FREED TABLES & VIEWS => 0
 TOTAL ACCESSES => 300
 RECOVERABLE BYTES => 0
==

The same report is generated for each active dataspace. The Dataspace-ID (DID) is printed in the heading on all

pages.

5. APPLICATION PROGRAMMING

INTERFACE

Application Programming Interface 55

TABLES/MM Reference Manual Section 5

Application Programming Interface

Overview

The TABLES/MM Application Programming Interface or API, is a very easy to use, high performance

interface for executing all functions supported by The TABLES Memory Manager. Its main functions are

used for retrieving data from dataspaces and local memory based on the application's requirement. Records

can be selectively retrieved based on one or more fields, the table can be scanned both forward and

backwards, and records retrieved based on effective dates. In addition, the dataspace can be controlled by

an application by loading, freeing, and monitoring tables within a dataspace.

The API is executed by using a standard subroutine call to the interface module with one or more

parameters. For all calls, there is one required parameter and several optional parameters. The Interface

Control Area (or ICA) is required and is used to pass processing requirements to the API and to return

status results back to the application. In addition to the ICA, a Record I/O area, Interface Sort Area (ISA),

and other optional parameters may be required. These are described below for each of the function codes.

Dataspace and Local Memory Access

The API, by default, tries to load and access tables from a dataspace with ID=00. This allows any

application running anywhere to simply call the API to load and access tables without the need for special

JCL or programming. To facilitate access to a different dataspace and/or local memory, this default can be

overridden. Using a special DD card in JCL, the dataspace ID can be set so that the API will always access

a specific dataspace rather than the default. It can also be set so that the API will not access any dataspace

and just use local memory to load and access tables. Further, by setting a flag in the ICA when calling the

API, dataspace and local memory access can be inter-mixed. This allows an application to

programmatically decide to use local memory for all or some tables and a dataspace for others. An

application cannot however, change or set the dataspace id internally. This can only be done through

JCL.

To specify where an application's tables will be loaded or accessed from, the API uses the following in

determining whether to access local memory, a specific dataspace or the default dataspace:

 (1) If the following DD card is included in the JCL for the online region, batch job or any other task:

//TBLDID DD DUMMY

then all dataspace access is bypassed. All tables will be loaded and accessed from local memory

only. This can be used by batch applications that require direct access to tables in local memory or

for testing applications without affecting production dataspaces.

Note: The API will always try to connect to a dataspace if this DD card is not included and will fail

if none are active. Therefore, always specify it when no dataspaces are active.

 (2) If the LOC-FLAG field in the ICA is set to 'L', specifying that local memory is to be used, then

no dataspace is accessed. Whatever the function, the specific table is only processed using local

memory. This flag can be dynamically set for different tables within the same program to access

some from local memory and some from a dataspace. For a specific table, it should always be set

to access the table either from local memory or the dataspace, but not both.

Application Programming Interface 56

TABLES/MM Reference Manual Section 5

 (3) If the LOC-FLAG is not set, and a TBLDID card with a dataspace id is found in the JCL, the API

always tries to access or load the table into the dataspace specified. For example, if the following

DD card was found in the JCL:

//TBLDID99 DD DUMMY

then all table processing would be done from dataspace with ID=99. This allows a particular

region (eg. test region) or a batch application to use a dataspace specifically setup for it. The

dataspace with the id must be active before it can be used.

 (4) If the LOC-FLAG is not set and no TBLDID card is found in the JCL, the API will then try to use

the default dataspace (ID=00).

To summarize, the API can be set so that either a dataspace and/or local memory can be used for tables.

The control can be done externally using the TBLDID card in JCL or internally, by setting the LOC-FLAG

in the Interface Control Area passed to the API. This allows the TABLES/MM API to be easily and flexibly

controlled for both online and batch applications.

Auto-Load Mechanism

When tables are processed from local memory, either explicitly or by default, the API will automatically

load the table into the local memory the first time the table is processed. This allows an application to be

coded independent of where the tables will be accessed from and eliminates the need to explicitly request a

table to be loaded when only local memory is used. A table is automatically loaded into local memory based

on the following:

 The table is to be processed from local memory because one of the following :

o The LOC-FLAG in the ICA was set to 'L'

o The TBLDID DD card was specified with no id, or

o The dataspace connected to was created with a limited set of authorized tables and the

table being processed was not one of them.

 The function specified is a valid GET request that can be issued as the first request. This is true for

all GET functions except GET NEXT (GETN) or GET PREVIOUS (GETP).

 And the table was not previously loaded.

If each of them is true, then the table will be automatically loaded into local memory. This can be especially

useful in testing applications without the need for dataspaces. Using the TBLDID DD card to bypass

dataspace processing, tables can be processed just as if they were pre-loaded into a dataspace. This is true

for batch applications as well as online transactions.

The auto-load mechanism is never used with dataspaces. All tables to be accessed from a dataspace

must be pre-loaded using the online or batch facilities or explicitly loaded by the application.

Bypassing DB2 Usage

When loading any table, TABLES/MM normally looks first in the MS_DEFINITION DB2 table for

information about the requested table. However, if DB2 is not available, then an error will occur and the

load request will fail. This is true even when loading VSAM or TABLES/MS tables.

For VSAM tables, the table MUST be defined to TABLES/MM in the MS_DEFINITION DB2 table or the

Application Programming Interface 57

TABLES/MM Reference Manual Section 5

TBLMSDEF VSAM file. Refer to the Chapter on the VSAM COMPONENT for more information about

bypassing DB2 when loading VSAM files without DB2.

To load TABLES/MS tables where DB2 is not available, use the following DD card in the JCL or online

region where the load will take place:

//TBLMSDEF DD DUMMY

All DB2 processing is bypassed and only the TABLES/MS databases are used. This also means that ONLY

TABLES/MS tables can be loaded by the job or region. Refer to the Appendix on TABLES/MS for

additional information about using it with the Memory Manager.

Calling the API

The API can be called from any language or system that supports the standard OS call structure. The

following are the basic requirements when calling it:

 Any addressing mode (Amode) can be used (24 or 31) by the calling program. The API always

uses 31-bit addressing and switches to and from it as required.

 The calling program can use any residency mode (Rmode). The API itself is setup initially with

Rmode=24. This allows programs running in 24-bit mode to call it along with programs running in

31-bit mode.

 Standard subroutine linkage is required with the variable parameter bit set (eg. COBOL CALL

works fine).

 The interface module, TMMINT, must be called dynamically, it can not be linked statically into

the calling program.

The following example shows the basic call to the API:

 CALL TMM-INT-MODULE USING INTERFACE-CONTROL-AREA,
 INTERFACE-RECORD-IO-AREA,
 INTERFACE-SORT-AREA.

In the example, an ICA, a record I/O area and an ISA is passed. The ICA is required and the other

parameters are optional depending on the function code. TMM-INT-MODULE is a variable defined in

working storage as an 8-byte character field with a value of 'TMMINT'. In COBOL, this ensures a dynamic

call. Each of the parameters is described in detail below.

Note: See the sample programs in the installation SOURCE library for a more detailed example of

setting up and calling the API. Also, the SOURCE library has sample COBOL layouts for the

different interface areas.

Application Programming Interface 58

TABLES/MM Reference Manual Section 5

Interface Control Area

The ICA is the main parameter used to pass control information to the API and for the API to return the

status of the results to the application. The following is the structure (shown as a COBOL layout) of the

ICA:

01 INTERFACE-CONTROL-AREA.
 05 ICA-RESERVED PIC X(08).
 05 ICA-TABLE-NAME PIC X(36).
 05 ICA-PROGRAM-NAME PIC X(08).
 05 ICA-FUNCTION-CODE PIC X(04).
 05 ICA-RESULT-CODE PIC X(08).
 05 ICA-SORT-FLAG PIC X(01).

 05 ICA-REASON-CODE PIC S9(8) COMP.
 05 FILLER REDEFINES ICA-REASON-CODE.
 10 ICA-SQLCODE PIC S9(4) COMP.
 10 ICA-RSNCODE PIC S9(4) COMP.
 05 ICA-LOC-FLAG PIC X(01).
 05 ICA-FREESPACE-TYPE PIC X(01).
 05 ICA-FREESPACE-AMOUNT PIC S9(8) COMP.
 05 ICA-FILLER PIC X(125).

Note: All fields not specifically set by the application should be
 initialized to spaces or low-values to insure
 consistent results and compatibility with future releases.

Each field in the ICA is important and should be set appropriately before calling the API. Please review the

description of each field below carefully:

RESERVED - The reserved field is used by the API to maintain control information.

This field MUST be initialized to spaces or low-values the first time the

API is called from a program. For online transactions, this area should

be initialized every time the transaction executes. If multiple ICA's are

used, this field MUST be copied from the first one used to all

others, before they are passed to the API the first time.

TABLE-NAME - The name of the table to process. Specify the fully qualified DB2 table

name, the name of a defined VSAM table or a defined View.

PROGRAM-NAME - This should be set to the name of the program that is calling the API. It

is used for monitoring and debugging and should be set correctly. It

must be NON-BLANK.

FUNCTION-CODE - This is the API function code to execute. It is a 1 to 4 character value

and is required. The function codes are described in detail below.

RESULT-CODE - A 1 to 8 character result returned to the application by the API. OK and

END are valid, all others are invalid. Refer to Appendix B for a

description of all possible result codes.

Application Programming Interface 59

TABLES/MM Reference Manual Section 5

SORT-FLAG - This is a flag that denotes whether the SORT-AREA is being passed to

the API. Set to 'Y' if a sort area parameter is specified on the call

statement. Any other value will mean no sort area is passed.

REASON-CODE - The reason code contains additional error information for certain result

codes when loading tables. If the value is negative, then ICA-

SQLCODE contains a DB2 sqlcode or an internally generated code and

ICA-RSNCODE will contain the reason code. For positive values, ICA-

REASON-CODE and ICA-RSNCODE are the same and represent the

reason code. See Appendix E for a list of all codes and what they

mean.

LOC-FLAG - The location flag is used to specify where a table is to be processed

from. Leave blank for normal default processing (e.g. a dataspace will

be used if available or local memory if not). Valid options are:

 “L” – Local mode. Only memory local to the job is used. The tables

are not shareable. That is, for a LOAD function, load the

table in local memory or for a GET function, only search a

local table.

 “D” – Dataspace mode. Tables will only be loaded into or searched

from a dataspace.

 “B” – Special Bypass mode. This is only valid on the FIRST call to

TMMINT for the job or process. It will cause bypassing of

dataspace usage without the need for the TBLDID DD

DUMMY card. Effectively implements Local Mode for all

requests.

FREESPACE-TYPE - Set to the percent character (%) to denote that the free space value is to

be used. This must be set for the LOAD function, otherwise, the free

space value is ignored.

FREESPACE-AMT - The free space value is used only when loading a table into a dataspace.

It is used to allow the table to expand and still be loaded into the same

memory location within the dataspace. Specify the percent of free space

to allocate. For example, if a table has 100 records, and a value of 10 is

specified, space for 110 records is allocated in the dataspace (eg. 10%

extra).

FILLER - This is a filler area to allow for future expansion of the ICA. It should

always be specified to insure older applications will continue to work

with future releases. Also, to insure compatibility, it should be

initialized to spaces or low-values.

Interface Record I/O Area

The Record I/O Area is used for both input to the API and output from the API. For all GET requests

except GETQ, the I/O area is used to pass the search values. Specific fields can be set within the I/O area

that will be used to match against the fields in the table. Only records where all fields are equal will be

returned. Any field in the I/O area not used, MUST be set to blanks, except when GETE or GETQ is used.

This is true for character and numeric fields. Blanks signify that the field is not used as search criteria. For

all GET requests, any record found is returned in the I/O area.

Application Programming Interface 60

TABLES/MM Reference Manual Section 5

The size of the I/O area must be large enough to contain the full record of any table it's used with. For

example, if an I/O area is used to retrieve a record from three tables with record sizes of 100, 200, and 300

bytes, then it must be at least 300 bytes long. For a statistics request, the I/O area must be at least as large as

the Statistics Information Block (100 bytes as shown in Figure 5-5).

When processing a complex view (eg. reformatting required), the I/O area only has to be large enough to

contain the record as defined for the view, not the base table.

For statistics functions, the results are also returned here. Refer to the Statistics Information Block for a

layout of the fields returned.

On a LODW request, the Record I/O Area must contain a two-byte binary length field followed by the

where clause used to select rows from the DB2 table. The length field must be set to the length of the

where clause (not including the length itself) and can be a maximum value of 1000.

Interface Sort Area

The Interface Sort Area (ISA) is no longer required and should only be used in very special circumstances.

It is used to specify the sort order when loading DB2 tables into memory from a program. However, it is

recommended that a primary index be defined instead. Using the TMMDEFN utility, a primary index

can be defined which has the same effect. It also eliminates the need to specify the ISA in all programs that

load the table and ensures that the table is always loaded in the correct order.

If used, the sort order defined in the ISA becomes the primary index for the table when loaded into memory.

Any primary index defined for the table will become a secondary index.

The ISA is used to specify the column and order the rows of the table are to be sorted on when loading a

table. In addition, the SORT-FLAG field in the ICA must be set to 'Y'. The ISA should never be passed if

the ICA-SORT-FLAG is not set to 'Y'. The following is the layout of the sort area:

 01 INTERFACE-SORT-AREA.
 05 ISA-FIELD-COUNT PIC 9(4) COMP.
 05 ISA-FIELD-ARRAY OCCURS 1 TO 50 TIMES.
 10 ISA-FIELD-NAME PIC X(32).
 10 ISA-ORDER-BY PIC X(01).

Within the Sort Area, the following fields are defined:

FIELD-COUNT - The count of the number of fields passed in the field array. This value

must be set to the correct number of entries used.

FIELD-NAME - This is the name of a column in the DB2 table to sort on. The fields

must be specified in major to minor order. That is the main sort field

should be the first entry and so on.

ORDER-BY - Specify 'A' for ascending or 'D' for descending order. The default is 'A'.

The FIELD-ARRAY can contain any number of entries but must contain at least as many as specified by the

FIELD-COUNT value. Any entries in the array not used are ignored.

Application Programming Interface 61

TABLES/MM Reference Manual Section 5

Function Codes

The API supports function codes to maintain and control dataspaces and local memory usage as well as

those for searching and retrieving data. The following table summarizes the function codes that can be used:

Function

Description

CMPR

Compress a dataspace

FREE

Free a table from a dataspace or local memory

GEFF

Get Effective row based on break-in, break-out dates

GETE

Get Equal based on search field parameters

GETF

Get First record based on search criteria

GETG

Get Greater than or Equal based on the primary key

GETL

Get Less than or Equal based on the primary key

GETN

Get Next record with specified search criteria

GETP

Get Previous record with specified search criteria

GETQ

Get Qualified based on search parameters

GETR

Get Reverse, the previous record in the table

GETS

Get Sequential, the next sequential record in the table

LOAD

Load a table into a dataspace or local memory

LODW

Load a DB2 table using the specified Where clause.

STGF

Statistics - Get First table

STGN

Statistics - Get Next table

Figure 5-4: API Function Codes

Function Code Descriptions

Each function code is described below with some specific result codes for the function. Common results

codes that can occur for many functions are described after them and all result codes are listed in

Appendix B.

 CMPR - Use to compress a dataspace. This is only required when a load fails due to not enough

room in the dataspace. It is recommended that this only be executed using a batch job

with high priority. If not, and an abend occurs, the dataspace can be left in a partially

compressed state.

Result Codes: ERRCMPR - A compress is already in progress for the specified

dataspace.

Application Programming Interface 62

TABLES/MM Reference Manual Section 5

 FREE - Use to free a table from a dataspace or local memory. In a dataspace, the memory is no

longer usable until a compress is done. A freemain is done for a local memory table

releasing and freeing it for other uses.

Result Codes: OK - Table was freed ok.

 GEFF - GET EFFECTIVE sets the table position to and returns the first record which matches the

fields in the I/O area and falls within the break-in and break-out dates. If the I/O area is

blank, the first effective record in the table is returned.

Result Codes: OK - An effective record was found and returned.

END - End of table, no effective records matching the

criteria were found.

EFFERROR - The table is not defined with effective dates.

 GETE - GET EQUAL sets the table position to the first record which matches those fields passed

as parameters and returns the complete record in the I/O area. The fields passed as

parameters must be in the I/O area and point to the first column of the field. At least one

field must be passed as a parameter after the I/O area. See the description and example of

GETE later in this section.

Result Codes: OK - A record was found and returned.

END - End of table, no records matching the criteria were

found.

 GETF - GET FIRST sets the table position to the first record which matches the fields in the I/O

area and returns the complete record in the I/O area. If the I/O area is all blanks, then the

first record in the table is returned.

Result Codes: OK - A record was found and returned.

END - End of table, no records matching the criteria were

found.

 GETG - GET GREATER searches the table using the first field in the primary index for records

with a value greater than or equal to the value specified and any other search criteria that

matches. If no primary index was defined at the time the table was loaded, only one field

can be placed in the I/O area. The one field is then used to compare against the table for

any records with a greater than or equal value. If a record is found that matches, position

is set and the record returned.

Result Codes: OK - A record matched ok and was returned.

END - No record matched the criteria.

NOTOK - More than one search field specified and no sort

fields exist.

 GETL - GET LESS is performed similar to GETG except the search is based on the field being

Less than or Equal. Also, instead of the first record in sequence being returned, the last

record in sequence is returned. In this case, the GETP will correctly return additional

records that match the search criteria.

Result Codes: OK - A record matched ok and was returned.

END - No record matched the criteria.

NOTOK - More than one search field specified and no sort

Application Programming Interface 63

TABLES/MM Reference Manual Section 5

fields exist.

 GETN - GET NEXT gets the next record that matches the search criteria specified on the previous

GETF or GETG function. It must only follow a GETE, GETF, GETG or GETQ or an

error occurs.

Result Codes: OK - Another record was found ok that matched the

criteria.

END - End of table, no more records matching the criteria

were found.

NOTOK - Table position not set by a previous call

 GETP - GET PREVIOUS gets the previous record that matches the criteria specified on the

preceding GETF or GETL function. It must only follow a GETL or a GETN that followed

a GETF (eg. get records that were previously retrieved).

Result Codes: OK - Another record was found ok that matched the

criteria.

END - Start of table was hit before any more matching

records were found.

NOTOK - Table position not set by a previous call

 GETQ - GET QUALIFIED sets the table position to the first record which matches the

qualifications of the search parameters and returns the complete record in the I/O area.

The I/O area MUST not contain the search values. All search values should be

separate fields and must not be changed if a GETN request is issued after the GETQ. At

least one qualification must be passed as a parameter after the I/O area. See the

description and example of GETQ later in this section.

Result Codes: OK - A record was found and returned.

END - End of table, no records matching the criteria were

found.

 GETR - GET REVERSE is used to get records in reverse order without any regard to search

criteria. Based on the current record pointer, the preceding record in the table is returned.

The last record in the table is returned if the record pointer was not set by any other

function. Any function can be used before GETR (eg. GETF) to position the record

pointer to a specific record in the table.

Result Codes: OK - The previous record was returned ok.

END - No more records, the start of the table was found.

 GETS - GET SEQUENTIAL is used to get the next sequential record in the table. It is the same as

GETR except it works in a forward direction. The first record is returned if the record

pointer was not previously set.

Result Codes: OK - The next record was returned ok.

END - The end of table was hit.

Application Programming Interface 64

TABLES/MM Reference Manual Section 5

 LOAD - LOAD a table into a dataspace or local memory depending on the flags in the ICA and

any TBLDID cards in the JCL. If the table is already loaded, it will be replaced with the

latest records. A table with no records is also valid.

Result Codes: OK - The table was loaded ok.

TBLINVLD - The load failed because the table was not found or

could not be accessed.

 LODW - LODW is used to load selective rows of a DB2 table. It is the same as LOAD except the

Record I/O Area is used to pass a SQL Where clause. The Record I/O Area must contain

a two byte binary length followed by the where clause. The clause must start with

'WHERE' and must be valid SQL syntax. The length must be set to the size of the where

clause passed in the I/O area (DO NOT count the length field as part of the size) with a

maximum value of 1000.

Result Codes: OK - The table was loaded ok.

TBLINVLD - The load failed because the table was not found,

could not be accessed or an invalid where clause was

passed.

 STGF - STATISTICS GET FIRST function is used to request statistical information for a table.

This can be used to check if a table is loaded, to directly access a table in local memory or

just to monitor a tables access. The statistics is returned in the I/O area. See below for

more information on the statistics information block.

Result Codes: OK - Statistics was returned ok.

END - No tables loaded.

 STGN - STATISTICS GET NEXT function is used to request statistics for the next table in the

dataspace or local memory. This is a continuation of the STGF call, which must precede

it.

Result Codes: OK - Statistics was returned ok.

END - No more tables in the directory.

Return, Result and Reason Codes

The Return Code from the API is always ZERO. For example, in COBOL the RETURN-CODE special

register will always be zero after calling the API. Therefore, the ICA-RESULT-CODE should be checked

after each call to test for any errors.

The Result Code field in the ICA is set by the API for all requests to specify whether the function executed

correctly. A result of 'OK' means the function worked. A result of 'END' means the GET function worked

but no record was found. Any other result means the function did not work and an appropriate action should

be taken. See Appendix B for a list of all Result Codes.

The Reason Code contains additional information when an error occurs during table load processing. It

specifies the reason of the failure. If the value is negative, then ICA-SQLCODE or the first two bytes of the

reason code will contain the DB2 sqlcode or an internally generated negative value. All codes from -9000 to

-9999 is set internally when using the VSAM access method. In batch processing, the two right-most digits

represent the File-Status code as set by COBOL. In CICS, the two right-most digits represent the CICS

EIBRESP value. See Appendix E for a description of all reason codes and actions to take.

Application Programming Interface 65

TABLES/MM Reference Manual Section 5

Statistics Information Block

For the STGF and STGN function calls, the statistics is returned in the I/O area using a format specified by

the Statistics Information Block (SIB). The information is the same for a table in a dataspace or local

memory except for the SIB-ADDRESS field. The layout of the SIB is shown in Figure 5-5.

 01 STATISTICS-INFORMATION-BLOCK.
 05 SIB-TABLE-NAME PIC X(36).
 05 SIB-RECORD-CNT PIC 9(9) COMP.
 05 SIB-TABLE-SIZE PIC 9(9) COMP.
 05 SIB-ACCESSES PIC 9(9) COMP.
 05 SIB-TIMESTAMP PIC X(8).
 05 SIB-USERID PIC X(8).

 05 SIB-RECORD-SIZE PIC 9(4) COMP.
 05 SIB-TABLE-ADDRESS PIC X(4).
 05 SIB-COLUMNS PIC 9(4) COMP.
 05 SIB-FILLER PIC X(28).

Figure 5-5.

The following are the fields in the SIB:

SIB-TABLE-NAME- The name of the table the statistics are for.

SIB-RECORD-CNT- The number of records loaded for this table.

SIB-TABLE-SIZE - The total number of bytes used for this table including definition and

data.

SIB-ACCESSES - The total number of times this table was accessed by a GET request.

SIB-TIMESTAMP - The timestamp when the table was loaded. This is the 8-byte binary

system clock value.

SIB-USERID - The userid of the job or transaction that last loaded the table.

SIB-RECORD-SIZE- The length of each record in the table.

SIB-ADDRESS - For tables in local memory, this is the address of the first record. This

can be used to directly reference a table. For a table in a dataspace, it is

set to zero.

SIB-COLUMNS - The number of columns defined in the table.

SIB-FILLER - Reserved area for future use.

Retrieving Records

In TABLES/MM, there are several different functions for retrieving records from a table. Some are used to

retrieve the first record based on some criteria, some to retrieve additional records, and others may be used

for both. In addition, records can be retrieved in a forward or backward direction.

The first GET request to a table must be one of the primary functions. All GET functions except GETN and

GETP are primary functions. These functions set the initial position within the table. To retrieve additional

records after the first request, a secondary function must be used. These include GETN, GETP, GETS and

GETR. The GETN/GETP functions retrieve the next record based on any search criteria from the primary

function. The GETS/GETR functions simply return the next sequential or previous record in the table

without regard to the search criteria.

Application Programming Interface 66

TABLES/MM Reference Manual Section 5

Which Function to Use

The application requirements should generally dictate which function to use. However, different functions

can be used to accomplish the same task. Therefore, to make the most effective and efficient use of

TABLES/MM, the guidelines below should be followed:

 If retrieving records with no search criteria, eg. scanning from the first record to some point or the

end, use GETS or GETR. GETF with the I/O area all blanks or GETQ with certain criteria can also

be used to start the search but are less efficient.

 If searching for specific records with some criteria, use GETQ. It is the most efficient and flexible

GET function and should be used instead of GETF, GETE, GETG or GETL.

 If GETQ is not used for some reason, and searching on just a few fields all with equal

comparisons, then GETE should be used. With GETE, the search fields, which must be in the I/O

area, are specified on the call to the API. This makes it more efficient then GETF as all fields in

the I/O area do not have to be checked.

 If GETQ or GETE are not used, and searching on fields with equal comparisons, then use GETF.

However, all fields in the I/O area not used as search fields must be set to blanks, including

numeric and character fields. For binary fields, this means values of X'40404040' will not be

used in the search.

 The GETL and GETG functions have limited use and only allow limited searching. It is

recommended that GETQ be used instead for efficiency and because the GETQ search criteria are

more explicit and lead to less confusion.

GETE Function

The GETE function works exactly the same way as GETF except in the way the search fields are defined.

With GETF, all non-blank fields in the I/O area are used. This leads to problems because all other fields,

including numeric fields, have to be set to blanks, which can cause problems with packed decimal and

binary fields. With GETE, only the search fields specified on the call statement are used. This means that

only those fields in the I/O area must be set. Other fields are not used, eliminating the need to clear them to

blanks.

The search fields for GETE must be specified on the call to TMMINT. Each search field must be part of the

I/O area specified on the call and must be the first position of a field. When a table is loaded into memory,

the offset of each field is known. For each field specified on the GETE request, the offset of it from the start

of the I/O area must match an offset as defined for a field in the table. If we have the following layout for a

table:

01 SAMPLE-TABLE.
 05 ST-NAME PIC X(36).
 05 ST-ACCT PIC X(8).
 05 ST-DIV PIC X(4).
 05 ST-SALARY PIC S9(6)V99 PACKED-DECIMAL.

Application Programming Interface 67

TABLES/MM Reference Manual Section 5

Then to search for all names with ACCT='COMPSRVC' and DIV='10', the following could be used:

 MOVE 'COMPSRVC' TO ST-ACCT.
 MOVE '10' TO ST-DIV.
 MOVE 'GETE' TO ICA-FUNCTION-CODE.
 MOVE 'SAMPTBL' TO ICA-TABLE-NAME.

 CALL TMMINT USING INTERFACE-CONTROL-AREA,
 SAMPLE-TABLE,
 ST-ACCT,
 ST-DIV.

In the example code, the ICA is passed first as always, SAMPLE-TABLE is used as the I/O area to pass

search values and where any records found are returned, and then the search fields are specified. In this

case, the search fields are ACCT and DIV. For GETE, the search fields must be part of the I/O area as is the

case for ST-ACCT and ST-DIV. Both are part of the SAMPLE-TABLE area which is passed as the I/O

area.

The other fields in SAMPLE-TABLE are not set or initialized. Since GETE will only use the specified

fields, this is not required.

GETQ Function

The GETQ function is the most powerful facility for searching a table and the most complex to use. It is

also the most efficient function because the parameters more directly specify the search criteria and the

application may need to retrieve less records. The parameters specify which fields in the table to use and

what operators to use. GETQ allows any type of comparison (eg. equal, not equal, greater, etc.) on all fields

in a table. This includes numeric, character and date fields. In addition, GETQ supports a range test using

the 'BETWEEN' operator.

Unlike all other GET functions, GETQ does not use the I/O area as the location of the search values. The

search values are specified in the same was as for GETE but MUST NOT be in the I/O area. All primary

GET functions except GETQ save the I/O area internally to allow the search to be continued (eg. using

GETN/GETP). With GETQ, since multiple search values and ranges are allowed for the same field, the I/O

area would not necessarily hold all search values. Therefore, for GETQ, the I/O area is not saved internally.

As such, if the I/O area is used to contain search values and a record is returned, the search values may be

changed and cause incorrect results if the search is continued using GETN. In addition, because the

search values are not saved internally, they must not be changed between the GETQ request and any

subsequent GETN requests.

There is another limitation when using GETQ and complex views. With other GET requests against

complex views, when the I/O area is saved internally, all fields are converted from the view format to the

base table format. This allows the search to be done efficiently. With GETQ however, the I/O area is not

saved and no fields are converted. Therefore, if searching a table that is a complex view, GETQ does

not support search fields where the view field has a different format than the base table. View fields

that have the same format as in the base table can be used.

The GETQ function is done like all other calls to TMMINT. However, it requires more complex parameters

to specify which fields to search on, what operators to use and the search values themselves. The basic call

for GETQ is shown below.

Application Programming Interface 68

TABLES/MM Reference Manual Section 5

 CALL TMMINT USING INTERFACE-CONTROL-AREA,
 IO-AREA,
 OPER-1, SRCH-VALUE-1,
 OPER-2, SRCH-VALUE-2,
 .
 .
 .
 OPER-n, SRCH-VALUE-n.

For each search criteria, there are two parts. The first part, shown as the OPER-n fields, specifies the field

in the table to search on and the operator to use. The second part specifies the search value. As stated

above, the search values should never be part of the I/O area specified in the request. Each search value

must be the exact same format and length as the field in the table. For range tests, the search value has a

specific layout. It is made up of a 2 byte count field followed by 2 fields with the exact same format as the

field in the table. The example below and the sample program SAMPAPP2 in the installation SOURCE

library show both types of search values.

The operator fields are simple character types (eg. PIC X(12)). They can be any length but should generally

be a minimum of 12 bytes. They are made up of two values, a field number and operator. The field number

is the sequence of the field as it occurs in the table. The first field in a table would be field number 1, the

second is field number 2, etc. For DB2 tables, doing a DCLGEN shows the correct sequence of the fields.

The second part is the operator itself. The following table lists the valid operators:

Therefore, for the operator fields, the following examples show some of the different possible values that

could be used:

OPER-1 = '01 = ' ... FIELD 1 IS EQUAL TO

OPER-2 = '06 > ' ... FIELD 6 IS GREATER THAN

OPER-3 = '12 BETWEEN ' ... FIELD 12 IS BETWEEN

OPER-4 = '2<> ' ... FIELD 2 IS NOT EQUAL TO

Field numbers can be up to 4 digits with zeroes optional on the left. The field number can be separated from

the operator by a space but it is not required. However, a space should always follow the operator.

Operator Meaning

=

 Equal

=, <>

 Not Equal

>

 Greater Than

>, <=

 Not Greater Than or Less Than or Equal

<

 Less Than

<, >=

 Not Less Than or Greater Than or Equal

BETWEEN

 Between a range of values

Application Programming Interface 69

TABLES/MM Reference Manual Section 5

To use the example from GETE above, it can be converted to a GETQ request as follows:

== Working Storage
 01 SEL-VALUE.
 10 SEL-ACCT PIC X(8).
 10 SEL-DIV PIC X(4).
 01 OPERATORS.
 10 OPER-1 PIC X(12).
 10 OPER-2 PIC X(12).
== Procedure Division
 MOVE '02 = ' TO OPER-1.
 MOVE '03 = ' TO OPER-2.
 MOVE 'COMPSRVC' TO SEL-ACCT.
 MOVE '01' TO SEL-DIV.
*

 CALL TMMINT USING INTERFACE-CONTROL-AREA,
 SAMPLE-TABLE,
 OPER-1, SEL-ACCT,
 OPER-2, SEL-DIV.

If we then needed to search the table for all names with ACCT='CORP' and SALARY BETWEEN 1000.00

and 2000.00, the following could be used:

== Working Storage
 01 SEL-VALUE.
 10 SEL-ACCT PIC X(8).
 10 SEL-SALARY.
 15 SEL-SAL-CNT PIC S9(4) BINARY.
 15 SEL-SAL-START PIC S9(6)V99 PACKED-DECIMAL.
 15 SEL-SAL-END PIC S9(6)V99 PACKED_DECIMAL.
 01 OPERATORS.
 10 OPER-1 PIC X(12).
 10 OPER-2 PIC X(12).
== Procedure Division
 MOVE '02 = ' TO OPER-1.
 MOVE '04 BETWEEN ' TO OPER-2.
 MOVE 'CORP' TO SEL-ACCT.
 MOVE 2 TO SEL-SAL-CNT.
 MOVE 1000.00 TO SEL-SAL-START.
 MOVE 2000.00 TO SEL-SAL-END.

 CALL TMMINT USING INTERFACE-CONTROL-AREA,
 SAMPLE-TABLE,
 OPER-1, SEL-ACCT,
 OPER-2, SEL-SALARY.

In this example, the SALARY is searched based on a range. The search values for a range must always be

passed in a structure like SEL-SALARY. The first field is the count of values and is required. It must be set

to 2 signifying that 2 values follow. Currently, only 2 values are allowed. The SEL-SAL-START and SEL-

SAL-END fields are the exact same format and size as ST-SALARY. This is required for the range values

and all search values.

For more dynamic searches, the field numbers and operators can be set based on what fields are to be used.

In addition, by re-defining the selection field area, the appropriate values could be set also based on what

Application Programming Interface 70

TABLES/MM Reference Manual Section 5

fields are to be used. This would allow for totally flexible searches dynamically changed at execution time

based on application needs.

Preparing an Application

In most applications that will be accessing tables from dataspaces, there is virtually no preparation required

to use the API other than to make sure the API load modules are available to the online region or batch job.

For some applications, however, that will be loading DB2 or VSAM tables, either explicitly or implicitly

(through auto-load), a DB2 bind may be required and some DB2 authority may be needed.

When a table is loaded, the API uses dynamic SQL to access the table itself and static SQL to access the

TABLES/MM MS_DEFINITION table and certain DB2 catalogs. Therefore, any time an application loads

a table, a DB2 plan is needed. The plan must include all the DBRM's, if any, for the application and the

following TABLES/MM DBRM's from the installation DBRMLIB:

 TBLIODB2

 TBLMSDEF

 TMMDEF1C

These should only be included if the application will be loading tables into memory. If the application is

only retrieving records using the GET functions, these DBRM's should not be included.

In addition, because the table being loaded is accessed using dynamic SQL, any user running the application

will need SELECT authority defined to DB2 to be able to load it.

For all online applications and for batch applications that also use DB2 or run under the IMS region

controller, a bind including the DBRM's is required. For batch applications that do not use DB2, no bind is

required. However, for the API to connect to DB2, it needs to know what DB2 plan and subsystem to use. It

does this through special JCL cards as follows:

 //DB2PLAN DD QNAME=plan-name

 //DB2SSID DD QNAME=subsys-id

 Where: plan-name - is the DB2 plan to use. Any plan that includes the

TABLES/MM DBRM's can be used including TMMUTIL (the

plan used for the batch utilities).

subsys-id - is the DB2 subsystem.

Therefore, when running batch applications that do not use DB2 but will be loading DB2 tables, the above

JCL cards can be used to inform the API about DB2 requirements. No other JCL changes are required.

 6. TRANSIENT TABLE INTERFACE

Transient Table Interface 73

TABLES/MM Reference Manual Section 6

Transient Table Interface

Overview

The Transient Table Interface is an optional component of TABLES/MM, implemented through an

extended set of function codes to the API. With it, an application can build and maintain in-memory tables

for its private use and save those tables to a dataspace or local memory. It can also be used to update

tables that have been pre-loaded into a dataspace or local memory.

If the Interface is not available, then a result code of FNCINVLD is returned if any of the function codes

described below are used.

When updating in-memory tables, the Transient Table Interface should be used with care because of the

additional complexities the application must take into account. However, there are several uses which can

justify its use:

 By eliminating or reducing the need to reload updated tables. This is especially helpful where the

in-memory table must be in sync with the original table at all times and the updates occur

reasonably frequently.

 Assisting in operating 24 hours, 7 days per week.

 Provides the capability to perform read-only access to DB2 and VSAM on-line while performing

batch update applications.

 Provides a capability to build temporary tables in memory and save in the Dataspace or Local

memory for multiple applications. This allows for transient type tables that may be used to

summarize or pass data from one job or transaction to another

Features and Capabilities

When using this interface, the following features and capabilities are very important. Each of these should

be understood and considered in any application that will be updating a table that has been loaded into a

dataspace or local memory:

 1. The updates are made only against the in-memory copy of the table. The application is

responsible for updating the original DB2 or VSAM table and making sure both copies

remain synchronized.

 2. Updates to a table are always made to a temporary copy of the table. That is, the TMAK function

gets the memory required and copies the table from the dataspace or local memory into it. This

temporary copy is only accessible from the program or transaction that issued the TMAK function.

Also, during the time the temporary table is being accessed, the program or transaction cannot

access the original table.

 3. The table in the dataspace or local memory remains available for concurrent read-only access by

other programs during the time the temporary table is being updated. However, any updates

made by the program will only take affect after the table is saved back to the dataspace or

local memory using the TSAV function.

Transient Table Interface 74

TABLES/MM Reference Manual Section 6

 4. A table that is updated by CICS transactions MUST NOT be updated by any other non-CICS

program. The TLOK/TUNL locking mechanism only locks a table within a particular CICS region

or all non-CICS regions. Therefore, updates can take place from one CICS region only or any IMS

region or batch job. Under no circumstances allow a table to be updated from a CICS region

and a non-CICS region at the same time.

 5. If a table to be updated is not locked using TLOK/TUNL, then it is the applications responsibility

to serialize the updates to the table using its own mechanisms.

 6. If a table is for transient purposes only and never saved back to the dataspace or local memory

copy, then there is no requirement to lock it.

 7. A complex view (eg. where columns are re-formatted) cannot be used with the transient table

functions. Only a base table or a simple view can be used. If a complex view is used, the results

will be unpredictable.

Transient Table Function Codes

The API function codes used for transient table processing and updating tables are summarized as follows:

Function

Description

 TLOK

Lock a table to serialize it

 TMAK

Make a temporary copy of a table

 TADD

Add a row to the temporary copy of a table

 TDEL

Delete a row from the temporary copy of a table

 TUPD

Update a row in the temporary copy of a table

 TSAV

Save the table back to the dataspace or local memory

 TUNL

Unlock a table the was previously locked

Figure 6-1: Transient Table and Update Function Codes

Function Code Descriptions

Each function code is described below with some specific result codes for the function. Common results

codes that can occur for many functions are described after them and all result codes are listed in

Appendix B.

 TLOK - Use to lock a table prior to updating. TLOK should always be issued before a TMAK if

the table will be updated. The lock stops any other program from issuing TLOK for the

same table in the same dataspace.

Result Codes: TBLINVLD - Table was not found.

Transient Table Interface 75

TABLES/MM Reference Manual Section 6

 TMAK - Make a temporary copy of a table that was loaded in a dataspace or local memory to be

used exclusively by the program issuing it. Any functions executed by the program

against the table will be directed to the temporary copy and not the original one. TMAK

is required before any update functions can be performed.

Result Codes: TBLINVLD - Table was not found.

GMERRTT - Error getting memory for the transient table.

 TADD - Add a row to a temporary table. The row specified in the I/O area passed is added as a

new row to the table. Any indexes for the table are updated as required.

Result Codes: NOTOK - The row being added is a duplicate of another row.

This only occurs when the key of a unique index

already exists.

 TDEL - Delete a row from a temporary table. The row specified in the I/O area passed is removed

from the table. Any indexes for the table are updated as required. The row passed in the

I/O area must be the complete row as stored in the table and match exactly.

Result Codes: NOTOK - The row being deleted was not found in the table.

 TUPD - Update a row in a temporary table. The row specified in the Second I/O area passed is

replaced with the row in the First I/O area passed. Any indexes for the table are updated

as required. The row passed in the second I/O area must be the complete row as stored in

the table and match exactly. The matching row found is then replaced with the updated

record.

Result Codes: NOTOK - The row being updated was not found in the table or

the update would cause a duplicate entry in a unique

index.

 TSAV - Save the temporary copy back to the dataspace or local memory making any changes

permanent. That is, the changes are now available to all programs accessing the table in

the dataspace or local memory. This is the opposite of TMAK. Once saved, the temporary

copy is deleted and any references to the table are now made against the updated table in

the dataspace or local memory.

Result Codes: TBLINVLD - Table was not found.

 TUNL - Unlock the table to allow other programs to update it. This reverses the TLOK function

and MUST be executed. TUNL should always be issued if TLOK was originally issued

for the same table no matter what other functions are done.

Result Codes: TBLINVLD - Table was not found.

NOTOK - No TLOK was issued for the table.

Transient Table Interface 76

TABLES/MM Reference Manual Section 6

Calling the API

The following example shows the basic call to the API when using the transient table and update function

codes:

 CALL TMM-INT-MODULE USING INTERFACE-CONTROL-AREA,
 RECORD-IO-AREA,
 OLD-RECORD-IO-AREA.

In the example, an ICA, a record I/O area and an old record I/O area are passed. The record I/O area is only

required for TADD, TDEL and TUPD. The old record I/O area is only required for TUPD. For TLOK,

TMAK, TSAV and TUNL only the ICA is required.

Please refer to Chapter 5 (Application Programming Interface) for a layout and description of the ICA and

other requirements when calling the API.

Also, the sample program SAMPAPP3, in the install SOURCE file, is a complete routine that can be

used to update a table in memory. It contains examples of all the transient table and update functions.

Using Transient Table Functions

 TLOK

The TLOK function is used to serialize the update process. Only one application can be updating a table at

the same time. To insure this, the TLOK function must be issued for the table being updated and must occur

before TMAK is issued.

To execute the TLOK function, call the API passing the ICA as a parameter with the name of the table to be

locked. The ICA is the only parameter required, the I/O area is optional and not used.

The TLOK function works differently in CICS regions versus non-CICS regions. When a transaction in

a CICS regions issues TLOK, the API internally does a CICS ENQ function to lock the table. In non-CICS

regions, the API internally executes an MVS ENQ macro. As a result, the following limitations apply to

the update process:

 - If a table is updated by a CICS transaction, then it cannot be updated by any non-CICS program. In

addition, it can only be updated within one specific CICS region. That is, if multiple CICS regions

are running, to insure the table does not get corrupted, only transactions in one region should be

updating any particular table.

 - If a table is updated by non-CICS programs, the update can be done from IMS regions, batch jobs

or TSO sessions but cannot be updated by any CICS transaction.

Note: Be aware that the above limitations are not enforced by the API. It is up to each location to

insure only CICS transactions in a specific region or only non-CICS programs update a

specific table.

Transient Table Interface 77

TABLES/MM Reference Manual Section 6

If an attempt is made to update a table in a dataspace from a CICS and non-CICS program at

the same time, the functions may appear to work correctly. However, it is possible, that some

of the updates will be lost if one program issued a TMAK while another program is updating

the table. The program that issues the TSAV last will have its updates saved but the first

program's updates will be lost.

 TMAK

The TMAK function is used to create a temporary copy of a table from a dataspace or local memory to be

used explicitly by the program executing the TMAK. Once TMAK is executed, any accesses to the table are

made to the temporary copy. The program can also no longer access the dataspace or local memory copy of

that specific table. However, no other program can access the temporary copy of the table. This is what

allows tables to be updated while the original table is still fully accessible by other programs. The

temporary table is the one that is always updated while the original is always available.

To execute the TMAK function, call the API passing the ICA as a parameter with the name of the table to

be copied. The table name MUST be for a base table or a simple view. If a complex view is specified,

the results will be unpredictable. The ICA is the only parameter required, the I/O area is optional and not

used. Also, the ICA-FREESPACE TYPE and AMOUNT fields and ICA-LOC-FLAG can be used. Setting

the freespace type and amount will allow for expansion of the table with less overhead. If not used, and

additional rows cause expansion of the table, it will be moved to a larger block of memory that has to be

allocated in addition to the current area already allocated. The ICA-LOG-FLAG specifies where the original

table was loaded. See Chapter 5 on the API for a more detailed description of the fields in the ICA.

Once TMAK has completed, then TADD, TDEL and TUPD can be used to actually update the table (again,

the temporary table is the one being changed). After all changes are made, then TSAV should be executed

to save the temporary table back to the dataspace or local memory.

 TADD, TDEL, TUPD

To actually update a temporary table, TADD is used to add new rows to the table, TDEL is used to delete

rows and TUPD is used to update a row.

To execute TADD, TDEL or TUPD, call the API passing the ICA as the first parameter with the name of

the table to be updated, a record I/O area, and for TUPD, an old record I/O.

When adding, the new row must be passed in the record I/O area. All column values should be specified in

the correct format for the table.

When deleting, the row to be deleted is also passed in the record I/O area. The complete row must be

passed as all columns of the row are compared. If all columns do not match, no record is deleted. Therefore,

before deleting a row, a GET request should be made to insure the row to be deleted is found and passed on

the TDEL request.

When updating, the new row is passed in the record I/O area and the old row is passed in the old record

I/O area as shown in the above example. The update process searches for an exact match of the old row, and

if found, replaces it with the new row.

In all cases, if there are any indexes for the table, all of them will be updated as required. If a row is updated

and the key for an index is changed, the old index entry is deleted and a new index entry is added.

Transient Table Interface 78

TABLES/MM Reference Manual Section 6

 TSAV

The TSAV function is used to save the temporary copy of a table back to the dataspace or local memory.

Once TSAV is executed, the temporary copy is freed and any accesses to the table are made to the updated

copy in the dataspace or local memory. TSAV is equivalent to re-loading a table from the original DB2

table or VSAM file after it has been updated, but uses much less resources and requires no I/O.

To execute the TSAV function, call the API passing the ICA as a parameter with the name of the table to be

saved. The ICA is the only parameter required, the I/O area is optional and not used.

 TUNL

The TUNL function is used to release the lock for the table locked using a TLOK request. Only issue

TUNL if the TLOK was successful. It should be the last function executed for the table after any updates

and TSAV have completed.

Note: If TLOK is issued, TUNL should always be issued. If not, a table could remain locked

permanently until the region or job that issued the lock is terminated.

To execute the TUNL function, call the API passing the ICA as a parameter with the name of the table to be

saved. The ICA is the only parameter required, the I/O area is optional and not used.

Summary

The Transient Table processing is a very powerful, but complex component of the MEMORY MANAGER.

If used correctly and for the right reasons, it can save enormous resources for keeping the in-memory copy

of a table synchronized with the original table. However, it should be considered and planned for with great

care to insure it is not misused and that applications are thoroughly tested before being implemented.

 7. VSAM Component

VSAM Component 81

TABLES/MM Reference Manual Section 7

VSAM Component

Overview

The VSAM Component is an optional part of TABLES/MM that eliminates the need for DB2 when

defining and loading tables. TABLES/MM normally uses a DB2 table to maintain table, view and index

information (eg. in the MS_DEFINITION table). This requires that any program or transaction that will be

loading tables into memory, be correctly setup to access DB2 (eg. binds, plans, authorizations, etc.), even if

the tables being loaded are not DB2. However, with the VSAM Component, TABLES/MM will allow

either a DB2 table or a VSAM KSDS to be used for storing table definitions. In addition, when using the

VSAM KSDS instead of the DB2 MS_DEFINITION table, all other DB2 access is bypassed so that no

connection to DB2 is needed, messages will correctly identify VSAM problems where appropriate and

utilities will run with either type.

Functions and Capabilities

The VSAM component is useful when DB2 is not installed at a specific location or not available on a

particular CPU. By using a VSAM KSDS for definitions, DB2 is not needed, allowing the Memory

Manager to run under these circumstances. Additionally, the following should be considered:

 Only VSAM or TABLES/MS tables can be loaded. If DB2 tables from another system need to

be loaded, they must be copied to a VSAM file, defined to TABLES/MM and then loaded into

memory.

 Regions which do not allow access to VSAM files are not supported, including IMS MPR

regions. However, any normal batch or TSO region or any CICS region can be used. VSAM access

is done through normal VSAM macros in non-CICS regions and through standard CICS interfaces

when running under CICS.

 The VSAM component is NOT REQUIRED to load VSAM tables. They can still be loaded

without it but require DB2 to be active and available.

 Normally, if DB2 is not available or down, tables cannot be loaded into memory, no matter what

type of tables they are. With the VSAM component, however, if the tables are defined using it,

then VSAM tables could be loaded even if DB2 is not available.

 As a backup facility, the DB2 MS_DEFINITION table can be periodically unloaded to a

sequential file and repro'ed into a VSAM KSDS to be used when DB2 is not available. This would

always allow VSAM files to be loaded into memory, even without DB2. User DB2 tables could

also be unloaded and repro'ed to VSAM allowing them to be loaded into memory anytime also.

(Note: TABLES/MM does not supply a utility to unload the MS_DEFINITION table or load it

into VSAM. However, sample DB2 utilities can be used to unload DB2 tables to sequential files

and IDCAMS can be used to load them into VSAM files using the REPRO command.)

VSAM Component 82

TABLES/MM Reference Manual Section 7

Using the VSAM Component

When included with the Memory Manager, the VSAM component is integrated into the product and

requires no changes in applications or programs. Also, there are no additional requirements to install it,

beyond setting up the VSAM KSDS. In addition, since the VSAM component is activated at the job or

region level, it allows for using either the VSAM KSDS or the DB2 table as required. One region can be

running with it and another without it.

To activate the VSAM Component is a very simple process. In a batch job, CICS region or TSO session,

simply include the following JCL card:

//TBLMSDEF DD DSN=your.vsam.ksds,DISP=SHR

This is true for any job or region that will be loading tables or defining tables, whether the TMMUTIL

utility, TMMDEFN, a user written application, or CICS transaction. In addition, for CICS, the FCT must

also include an entry for TBLMSDEF or use RDO to define it.

The TBLMSDEF DD card represents the MS_DEFINITION table where all TABLES/MM table, index and

view information is stored. It is used to replace the DB2 table and tells TABLES/MM not to use DB2 at

all. If the TBLMSDEF DD card is present whenever a table is loaded, TABLES/MM will always attempt to

use the associated VSAM dataset and will bypass DB2. Therefore, always make sure there is no

TBLMSDEF DD card present in any job or region when loading tables if it is not required. In CICS,

also make sure the TBLMSDEF file is not defined in the FCT or an error will occur.

Setting Up a VSAM Definition Dataset

IN TSO

Before using the VSAM component, a VSAM KSDS must be defined and initialized. This can be done on

TSO or in batch using the TMMVIMSD clist supplied in the installation CLIST library. On TSO in

READY mode or using an ISPF Command Line, execute the following clist using the appropriate

parameters as described below:

%TMMVIMSD dataset-name RESET NEW VOLUME(volser)

 Where:

dataset-name - The name of the VSAM file to create and/or initialize. The name must be fully

qualified with or without quotes.

RESET - Initialize the dataset even if it was already done. This will cause all existing

records to be deleted. ONLY specify this when an existing dataset is to be

reset back to its initial state (eg. empty and ready to use). BE CAREFUL.

NEW - Specifies that a new KSDS is to be defined with the specified name. The

VOLUME parameter is required if NEW is specified.

VOLUME - Specify the name of the volume to use when defining the new KSDS. This is

required when NEW is specified.

VSAM Component 83

TABLES/MM Reference Manual Section 7

 Examples:

%TMMVIMSD USER1.MM.MSDEF NEW VOL(UVOL01)

 - Will create and initialize a new VSAM KSDS on volume UVOL01.

%TMMVIMSD USER2.MM.MSDEF RESET

 - Will re-initialize an existing VSAM file deleting all existing definitions from it.

IN BATCH

To do the same thing in batch, use IDCAMS to define a VSAM KSDS based on the sample definition in

member VSAMDEF of the installation SOURCE library. After the define, execute TMMVIMSD program

to initialize the KSDS. In the installation JCL library, the TMMVIMSD procedure can be used to execute it

or use the following sample JCL with appropriate changes for your installation :

//STEP EXEC PGM=TMMVIMSD
//STEPLIB DD DSN=mm.loadlib,DISP=SHR
//TBLMSDEF DD DSN=msdef.vsam.ksds,DISP=OLD
//SYSOUT DD SYSOUT=*

This will initialize the VSAM file specified on the TBLMSDEF DD card. The TMMVIMSD procedure in

the installation JCL library has more details and describes some optional parameters that can be used.

Other Changes

When using the VSAM component there are changes to some messages that reflect the use of VSAM versus

DB2. This can occur when using TMMUTIL, TMMDEFN and the on-line utilities. The changes only affect

messages when errors occur and for a few informational messages. Return codes and reason codes may be

different when processing VSAM and these are described for the appropriate messages. Please refer to

Appendix B for all messages and descriptions. Refer to Appendix E for reason codes and special SQL-like

codes that are generated by TABLES/MM when accessing a VSAM definition file. The SQL-like codes are

passed back when calling the interface in the ICA and allow for consistency when checking results and

reporting errors in applications.

Summary

The VSAM component is a very easy facility to make use of and allows TABLES/MM to be used when

DB2 is not available. If not activated, it will not impact TABLES/MM in any way and requires no

application changes if it is activated.

 APPENDICES

Messages 87

TABLES/MM Reference Manual Appendix A

Appendix A - Messages

The TABLES Memory Manager components use the same basic format for all messages. Refer to the following

breakdown when reviewing messages:

TMMf###t - message text

Where TMM= the prefix for all TABLES/MM messages.

f= The functional area, as follows:

 D - Definition Utility (TMMDEFN)

 I - Interface Messages (TMMINT)

 L - Load Utility (TMMLOAD)

 R - Report Utility (TMMRPT)

 S - Dataspace Setup (TMMSTART)

 U - Batch Utility (TMMUTIL)

 V - VSAM Batch Utility (TMMVIMSD)

###= The message number.

t= The message type, as follows:

 E - Error occurred

 I - Informational message

 R - Response required

TMMDEFN - Batch Definition Messages

TMMD000E - DB2 CONNECTION FAILED, PLAN OR AUTH ERROR

The connection to DB2 could not be made. This is due to an invalid plan name, the user running the job is

not authorized to execute the plan, the DB2 subsystem is invalid, or DB2 is not running. If the installation

of TABLES/MM was done correctly, this should normally occur only when the user is not authorized for

the DB2 plan.

TMMD001E - INVALID FUNCTION CODE

The first word on each control card input must be a valid function code. Check the card in question for a

misspelled function code. Valid functions include REPLACE, CREATE, COLUMN, COPY, DROP,

COMMIT, ROLLBACK, LIST and abbreviations for them.

TMMD007E - CREATE FAILED, DUPLICATE ENTRY

When creating a new entry, an existing entry with the same name was already found to exist. Either delete

the old one, use REPLACE or change the name.

TMMD008E - RECORD NOT FOUND

The specified entry could not be found when replacing or dropping it. Use LIST to see if the entry exists or

use CREATE if this is a new entry.

Messages 88

TABLES/MM Reference Manual Appendix A

TMMD009E - UPDATE/DELETE FAILED, RECORD NOT FOUND

When replacing or dropping a record, the entry was not found. Use LIST to see if the entry exists or use

CREATE if this is a new entry.

TMMD010E - ROLLBACK: ALL UPDATES REMOVED

An error occurred in processing a function. All changes are removed when this occurs. Fix the error that

occurred and re-run the job with the same input. The COMMIT function can be used to keep changes from

being removed.

TMMD011E - ROLLBACK: UPDATES REMOVED AFTER FUNCTION nnnnn

An error occurred in processing a function. All changes after the function nnnnn have been removed. This

occurs if COMMIT was used to keep changes. Fix the error that occurred and re-run the job with the input

starting after function nnnnn.

TMMD012E - NO INPUT TO PROCESS

No input was found. Check to make sure the file with DDNAME of CONTROL points to valid input. Also

make sure that all input was not commented out (eg. all cards starting with '*', '--').

TMMD013E - TOO MANY INPUT RECORDS FOR THIS FUNCTION

For any one function (eg. CREATE, DROP, etc), there is a maximum of 500 cards. This should normally

never occur. Check the input data to make sure it is valid.

TMMD014E - INVALID INPUT, TOO MANY PARAMETERS

There were too many parameters specified for this function. Check the first card for the function to make

sure no extra values were specified. Review the documentation for the particular function to see what

parameters are valid.

TMMD015E - INVALID OBJECT TYPE (2ND PARAMETER)

The object specified is invalid. The object is the value after the function and must be one of the following:

INDEX, TABLE, VIEW, or a pluralized version.

TMMD016E - FUNCTION NOT AVAILABLE FOR THIS OBJECT

For the object, the specified function is not available. Review the documentation for the particular object to

see what functions are available.

TMMD017E - SQL ERROR, ?

An SQL error occurred processing the specified function. This should not normally occur. Check with your

DB2 administrator for the SQL error in question or call SSI for support.

TMMD020E - ERROR IN CARD nnnn.mmmm: ???????????

In function nnnnn, card mmmm is invalid for the reason shown. Review the card in question and adjust as

required. Review the documentation for the type of card for valid parameters.

Messages 89

TABLES/MM Reference Manual Appendix A

TMMD030E - COPY MEMBER NOT FOUND IN THE LIBRARY

For a COPY/INCLUDE request, the member could not be found in the library with the DDNAME specified

or in the default library with DDNAME of COPYLIB.

TMMD031E - COPY MEMBER EMPTY OR NO VALID STATEMENTS FOUND

The member specified was either empty or had all blank or all comment cards. Check the member name to

make sure it is correct and the DDNAME is specified if not using COPYLIB.

TMMD032E - OPEN FAILED FOR COPY LIBRARY

The COPYLIB or ddname specified could no be opened. When copying COBOL or Assembler copybooks,

the DDNAME must be defined in the JCL or allocated correctly. If no DDNAME was specified on the

COPY statement, make sure a COPYLIB DD card is defined in the JCL pointing to the dataset containing

the member specified.

TMMD033E - COPY MEMBER TO LARGE TO PROCESS

The member being copied was too large to process. The maximum size a member can be is 500 records.

Check the member and the library to make sure they are correct.

TMMD034E - UNKNOWN ERROR READING THE COPY MEMBER

When reading the member from the specified dataset, an I/O or other error occurred. Check to make sure

the member name and the dataset are correct.

TMMD035E - MEMBER NAME REQUIRED ON COPY CARD

When copying a COBOL or Assembler copybook, a member name is required.

TMMD036E - LANGUAGE TYPE REQUIRED ON COPY CARD

Either COBOL or ASSEMBLER must be specified after COPY to denote the type of copybook to process.

TMMD037E - TOO MANY PARAMETERS ON COPY CARD

When scanning the COPY card, more parameters than should be were found. Remove any invalid

parameters and check the documentation for the COPY card for the parameters that are valid.

TMMD038E - INVALID STATEMENT IN COPYBOOK, STMT ####

When processing the copybook member, statement #### was invalid. Review the copybook member and

make sure it can be correctly compiled. Also, the statement before or after the specified number should be

checked.

TMMD039E - ERROR PROCESSING COPYBOOK, ERROR CODE = ####

When processing the copybook, an error occurred. This should only occur if the copybook could not be

successfully compiled. Error Code is the return code from the Assembler or one of the following:

101 - In a COBOL copybook, an occurs was found on a group level. These are not supported.

Messages 90

TABLES/MM Reference Manual Appendix A

TMMD040E - (#) REQUIRED BEFORE THE INDEX ID

When processing an INDEX, the '#' is required after the INDEX keyword. For REPLACE and DROP, the

'#' and the index number are required. For create, the '#' is required to insure that the number is not

inadvertently forgotten.

TMMD041E - INDEX ID INVALID

A valid 1 or 2-digit ID is required after the '#' when processing an index. No spaces should be between the

'#' and the ID.

TMMD042E - TABLE NAME REQUIRED FOR INDEX FUNCTIONS

When processing an index, a table name is always required.

TMMD043E - INDEX ID REQUIRED FOR THIS FUNCTION

For the REPLACE and DROP function, an index ID must be specified. The ID must immediately follow the

'#' with no spaces in between.

TMMD044E - INVALID KEYWORD FOR INDEX FUNCTION

An invalid keyword was found for the INDEX function. Review the documentation for the valid parameters

that can be specified on the INDEX card.

TMMD045E - TOO MANY COLUMNS SPECIFIED (16 ALLOWED)

An index can currently have up to a maximum of 16 columns in the key. Remove all extra column cards so

that only 16 remain.

TMMD046E - INVALID TABLE NAME OR TABLE DOES NOT EXIST

The table name was invalid or does not exist. An index can only be created for a DB2 table defined in the

DB2 catalog or for a VSAM table previously defined using TMMDEFN. Check to make sure the table

specified exists.

TMMD047E - AT LEAST ONE COLUMN REQUIRED FOR INDEXES

An index requires at least one column. Make sure that a COLUMN card follows the INDEX card. COPY

cannot be used to define columns for indexes.

TMMD048I - ID SET, NEW INDEX CREATED WITH ID = nn

Informational message issued when an index is created and the ID was not specified. TMMDEFN

automatically assigns the next ID number as one plus the previous highest existing index for the table. The

nn is the index number that was assigned.

TMMD060E - VIEW NAME REQUIRED

When processing a view the VIEW name is always required. No name was found following the VIEW

keyword.

Messages 91

TABLES/MM Reference Manual Appendix A

TMMD061E - BASE TABLE NAME REQUIRED

When creating or replacing a view, the base table name is required. The base table is the physical table the

view is defined for. It can be a table in the DB2 catalog or a VSAM table defined using TMMDEFN.

TMMD062E - NO PARMS ALLOWED AFTER THE BASE TABLE NAME

On a view function, parameters followed the base table name. None are allowed. Review the VIEW

function documentation for valid parameters.

TMMD063E - INPUT FOLLOWING DROP, NONE ALLOWED

When Dropping a view, table or index, secondary cards followed the function card. That is, a COLUMN,

COPY or other card was found. There should be no secondary cards for the DROP function. Remove any

such cards.

TMMD064E - BASE TABLE NOT FOUND

The base table name specified for the view does not exist. The base table must be defined in the DB2

catalog or be defined in the TABLES/MM MS_DEFINITION table as a VSAM file before a view can be

created for it.

TMMD065E - TOO MANY COLUMNS DEFINED, MAX IS 300

The maximum columns that can be defined for a view is 300.

TMMD080E - TABLE NAME REQUIRE

A table name is always required when processing a table. Specify the table name following the TABLE

keyword on the function card.

TMMD082E - NO PARMS ALLOWED AFTER THE TABLE NAME

Parameters were found after the table name. None are allowed. Review the documentation for valid

parameters with table functions.

TMMD083E - INPUT FOLLOWING DROP, NONE ALLOWED

When Dropping a view, table or index, secondary cards followed the function card. That is, a COLUMN,

COPY or other card was found. There should be no secondary cards for the DROP function. Remove any

such cards.

TMMD084E - DB2 TABLE NOT FOUND

The table being created was not a VSAM table (eg. starts with VSAM.) and the name could not be found in

the DB2 catalog. Check to make sure the name is correct. If defining a VSAM table, the name must start

with VSAM.

TMMD085E - AT LEAST ONE COLUMN REQUIRED FOR TABLES

A table must have at least one column. Specify the column definitions for the table after the

CREATE/REPLACE TABLE card or use the COPY card to define the columns. Also, make sure the

following card is correctly entered.

Messages 92

TABLES/MM Reference Manual Appendix A

TMMD098E - ERROR: FUNCTION TERMINATED, RC = nnnnn

An error occurred processing the function. Review the previous messages for the error that occurred. The

return code will specify what type of error occurred:

08 - Error occurred processing the function

12 - Invalid parameter

16 - Severe error

TMMD099E - INTERNAL LOGIC ERROR. (?)

A situation was found that should not occur. The (?) specifies the internal error code. This should be

reported to SSI immediately.

TMMD101I - TMMDEFN PROCESSING RESULTS:

This is the first message displayed from TMMDEFN.

TMMD102I - TMMDEFN ENDED, RC = nnnnn

This is the last message displayed and shows the highest return code. This is also the return code for the

JOB/STEP.

TMMD103I - FUNCTION COMPLETED NORMALLY, RC = 0

This message is displayed for each function that completes successfully.

TMMD104I - COMMIT SUCCESSFUL, PROCESSING COMPLETED

If all functions complete successfully, a DB2 COMMIT is issued. This message is displayed if the

COMMIT is successful.

TMMD105I - PROCESSING THE FOLLOWING FOR FUNCTION NO. nnnnn

This message specifies that a function was found and is about to be processed. All cards associated with this

function (eg. the function card and any secondary cards) are displayed following the message. The function

number, nnnnn, is just a count of the functions that have been processed so far and may be displayed in

other messages.

TMMD106I - NAME NOT FOUND, NO ENTRIES LISTED

For the LIST function, no entries were found to list. The function completes normally.

TMMD017I - PROCESSING DEFINITION TABLE: creator-id.MS_DEFINITION

All definitions are maintained in a DB2 table with a name of MS_DEFINITION and a creator-id specified

when the system is installed. This is the DB2 table that will be processed.

TMMD108I - LIST COMPLETE

The list function has completed. One or more entries may have been listed. The list function always

completes normally even if no entries are found.

Messages 93

TABLES/MM Reference Manual Appendix A

TMMD109I - COPY MEMBER PROCESSED, RECORDS READ = nnnnn

A copy member was processed successfully and nnnnn was the number of records read from the member.

TMMINT - Interface (API) Messages

TMMI001I - CLIENT CONNECTED TO DATASPACE ID = ??

The first time an application calls the API, the interface sends this informational message to the JES2 job

log of the on-line region or batch job if the connection was made. It allows for validating that a region or

job has connected to the correct dataspace. If dataspace access is turned off using the TBLDID card, then

this message will not be sent. The ?? is the id of the dataspace connected to.

TMMI002E - ERROR INITIALIZING CLIENT, RC = rc-errc

If the interface fails to connect to a dataspace, it sends this message to the JES2 job log of the on-line region

or batch job. The return code (RC) value specifies what error has occurred. The following is a list of

possible values:

 08-0004 The dataspace specified on the TBLDID card in the JCL or the default one is not active.

Start the appropriate dataspace and re-run the job or transaction. An on-line region does

not have to be re-started. The application issuing the request will receive a result code of

ERRNODS in the ICA. For testing, use a 'TBLDID DD DUMMY' to bypass dataspace

access.

 21-???? A request (GETMAIN) for memory failed during the interface initialization. The ???? is

the return code from the GETMAIN macro. The interface always requests memory from

above the line and as a result, this should never occur. If it does, the system default region

size for above the line memory may have to be increased.

 24-0000 An invalid dataspace id was detected when processing the TBLDID dd card from the

JCL. The dataspace id must be two non-blank, alpha-numeric characters following the

TBLDID (eg. TBLDID01 would be used to specify dataspace 01).

 Other All other values are internal errors and should be reported to technical support.

TMMLOAD - Online Transaction Messages

TMML000E - TMMLOAD TRANSACTION ENDED.

The TMML full screen transaction was ended by the user.

TMML001E - SEE REFERENCE GUIDE FOR HELP.

While using the TMML full screen transaction, PF1 was pressed to request help. Currently, TMML does

not support help. See the TABLES/MM Reference Guide for help.

Messages 94

TABLES/MM Reference Manual Appendix A

TMML002E - SCROLL UP IS NOT SUPPORTED.

While using the TMML full screen transaction, PF7/19 was pressed to scroll up. Either there is nothing to

scroll or scroll up is not supported. Re-issue the same request to start from the beginning again.

TMML003E - INVALID OR NOT ACTIVE PFK PRESSED.

While using the TMML full screen transaction, a PF Key that is not valid or not functional at the current

time was pressed. Use a different PF Key or Enter to perform a function.

TMML004E - PLEASE ENTER A FUNCTION TO EXECUTE.

While using the TMML full screen transaction, ENTER was pressed but no function was specified. Enter a

valid request (eg. LIST, LOAD, etc.) in the FUNCTION field.

TMML005E - INVALID LOCATION, ENTER L, D OR SPACE.

While using the TMML full screen transaction, an invalid value was entered in the Location of Table field.

Valid values are 'D', 'L' or no value (eg. leave blank).

TMML006E - FREE SPACE AMOUNT MUST BE NUMERIC.

While using the TMML full screen transaction, an invalid value was entered in the Free Space: Amount

field. Enter a valid number or leave blank.

TMML007E - FREE SPACE TYPE MUST BE R OR P.

While using the TMML full screen transaction, an invalid value was entered in the Free Space: Type field.

Valid values are 'R' for Records or 'P' for percent.

TMML008E - END OF LIST OR NO TABLES TO LIST.

While using the TMML full screen transaction, scroll down was requested but there are no more entries; or

when entering LIST, there are no tables to list. Specifying the Location of Table will affect where the list of

tables is retrieved from.

TMML009E - UNKNOWN PARAMETER PASSED TO TMMLOAD.

While using the TMML transaction in line mode, invalid parameters were found. Refer to the Reference

Guide for valid parameters that can be passed to TMML in line mode.

TMML010E - FUNCTION COMPLETED OK.

While using the TMML transaction, the function was processed and completed normally (eg. if LOAD was

selected, the load completed ok).

TMML040E - FUNCTION FAILED. RESULT = ?, REASON = ?, SQLCODE = ?

While using the TMML transaction, a function passed to TMMINT failed. The result code, reason and sql

codes from TMMINT are displayed. Refer to the Appendix on Result and Reason Codes for more

information or check the SQL Code for the cause of the problem.

TMML041- STATS FOR table: RECS = ###

While using the TMML transaction in line mode, a STGF (Stats Request) was issued. The table name and

Messages 95

TABLES/MM Reference Manual Appendix A

number of records loaded in memory is displayed.

TMMRPT - Batch Report Messages

TMMR001E - NO DATASPACES ACTIVE OR ERROR RETRIEVING INFORMATION

When TMMRPT utility finds no active dataspaces or an invalid return code is received from the dataspace

interface module, this message is displayed in the SYSOUT print dataset. If no dataspaces are active, start

any that should be. If dataspaces are active, call for support.

TMMR002E - DATASPACE NO LONGER ACTIVE OR ERROR RETRIEVING INFORMATION

While processing a specific dataspace, TMMRPT found the dataspace had been deleted. This should only

occur if the dataspace job is terminated while TMMRPT is running.

TMMR003E - ERROR RETRIEVING INFORMATION FOR A TABLE

When retrieving information for a specific table, TMMRPT found the table to no longer be available. This

should only occur if the dataspace was stopped and restarted while TMMRPT was running.

TMMSTART - Dataspace Setup Messages

TMMS001R - REPLY "STOP??" TO END D/S-??-jjjjjjjj

After a dataspace is created and available to use, this message is displayed on the system console by

TMMSTART. The '??' is the Dataspace ID as entered for the DID= parameter in the start-up JCL and

'jjjjjjjj' is the job or task name. This message is used to allow a specific dataspace to be stopped. When a

dataspace is no longer needed, the operator should reply 'STOP??' to terminate the dataspace with an id of

'??'.

TMMS002E - ERROR, RC = ??? FOR FUNCTION = ????????

If an error occurs during dataspace creation or initialization, this message is sent to the system console by

TMMSTART. Clean-up is performed and the dataspace job is ended with a return code = 8. The following

is a list of FUNCTION values and associated return codes:

DSPSERV - Error creating a common dataspace. RC is the return code from the DSPSERV

macro. Possibly too many common dataspaces created. See DSPSERV macro

for possible return code values.

TESTAUTH- The TMMSTART is not authorized to create common dataspaces. Make sure

TMMSTART is in an APF authorized library and the module is linked with

parameter AC=1.

ENQ-ID - The dataspace with the ID specified for the DID= parameter in the start-up JCL

is already active. Change the ID or terminate the active one. RC is the return

code from the ENQ macro and can be checked if the dataspace was not active.

Messages 96

TABLES/MM Reference Manual Appendix A

GETPARM - An error was detected in the start-up parameters. Refer to Section 2 on Creating

a Dataspace for parameter descriptions and requirements. Fix the parameter and

re-start the dataspace. RC is always set to 8.

KEY9-INV - The dataspace was started using KEY=9 but the computer being used does not

support it. Only use KEY=8 when starting dataspaces on hardware that does not

support Sub-system Storage Protection (SSP).

Any Other - Any other function codes returned are internal errors and should be reported to

technical support.

TMMS003E - INVALID REPLY

This message is issued by TMMSTART if the operator replies incorrectly to message TMMS001R. If

STOP is not entered and followed by the correct dataspace id, this message is displayed. No action is taken

by TMMSTART other than to re-issue TMMS001R. The operator should respond with the correct

dataspace id or to the correct STOP message.

TMMUTIL - Batch Utility Messages

TMMU001E - INVALID CONTROL CARD CODE

A control code in column 1 to 4 was invalid. All control codes are 4 characters, padded on the right with

blanks. Fix the invalid code and resubmit the job.

TMMU002E - DATA PARAMETER MISSING OR BLANK

On a DATA card, there are four required parameters. Each must be separated from the other by 1 or more

blanks. The first one must start in column 5. Refer to the DATA control code for a description of each

parameter.

TMMU003E - DATA TYPE INVALID (C, N, B, OR P)

On the DATA card, the type parameter must be C, N, B, or P. Review the parameters and fix the type value.

TMMU004E - INVALID POSITION SPECIFIED

On the DATA card, the position value was invalid or not specified. Make sure the position is numeric and

within allowable ranges for the record.

TMMU005E - INVALID LENGTH SPECIFIED

On the DATA card, the length was invalid or not specified. Make sure the length is numeric and in the

range of 1 to 32.

TMMU006E - INVALID VALUE OR TYPE

On the DATA card, the value could not be converted to the specified type. Make sure the value is a valid

number with no decimal places and is not larger than the type will allow.

Messages 97

TABLES/MM Reference Manual Appendix A

TMMU007E - TABLE NAME MUST BE SPECIFIED FIRST

A FUNC card was specified before a TABL card was processed. A table name is required before any

interface function can be executed.

TMMU008E - INVALID REPEAT COUNT

The REPEAT-COUNT value specified after the function code on the FUNC card was invalid or too large.

Make sure the value is numeric and less than 9999.

TMMU009E - INVALID SIZE OR COULD NOT SET

In attempting to set the SIZE of the record to display, the value entered was not numeric or invalid or if

SET was specified, statistics could not be retrieved for the table in order to get the record size. Fix the value

or make sure the table is loaded before specifying the SIZE card.

TMMU010E - INVALID SORT NAME (BLANK)

A SFLD card was entered but no column name was specified. The column name is required before the A/D

order code.

TMMU011E - SORT SEQUENCE MUST BE A OR D

On the SFLD card, only one column name is allowed with an optional order value. The order must be A for

ascending or D for descending.

TMMU012E - INVALID DISPLAY LINE SIZE

The value entered for the DISP parameter was not numeric, not specified or invalid. It must be in the range

of 1 to 204.

TMMU013E - INVALID FREE SPACE VALUE

On the FSPC card, the free space parameter was not numeric. Enter a valid numeric value for the percent of

free space to use when loading tables.

TMMU015E - INVALID LOCATION FLAG VALUE

For the LOC card, an invalid value was specified. Enter 'L' to set the flag to load a table into local memory

or blank to load the table into a dataspace.

TMMU016E - ID INVALID OR THE SAME, NOT CHANGED

On the DID card, to process a different dataspace, the ID must be different than the current value and must

be a valid dataspace id (eg. 2 alpha-numeric characters).

Messages 98

TABLES/MM Reference Manual Appendix A

TMMVIMSD - VSAM Component Utility Messages

TMMV001E - FILE ALREADY INITIALIZED. USE RESET PARM IF NEEDED.

The VSAM KSDS being initialized as an MS_DEFINITION file has already been initialized. If the file was

already initialized, it is all set to be used. If the file is to be re-initialized, then specify the RESET

parameter. Be aware, using RESET will delete all definition records currently in the file.

TMMV002E - ERROR OPENING FILE FOR OUTPUT (*)

The VSAM file to be initialized could not be opened for processing. Check to make sure a TBLMSDEF

DD card is correctly defined in the JCL or allocated. It must specify a valid VSAM KSDS dataset that was

created using IDCAMS or the TMMVIMSD clist. Also, review the file status code and VSAM error

information for the cause of the problem.

TMMV003E - ERROR WRITING INITIAL RECORD (*)

When writing a record to initialize the VSAM MS_DEFINITION FILE, the write failed with a VSAM

error. Make sure the dataset specified on the TBLMSDEF DD card is a valid VSAM KSDS and is correctly

defined. Also, review the file status code and VSAM error information for the cause of the problem.

TMMV004E - ERROR OPENING FILE TO DELETE RECORD (*)

When re-opening the VSAM MS_DEFINITION file for I-O processing to delete the initial record that was

inserted, the OPEN failed. This should not generally occur. Review the file status code and VSAM error

information for the cause of the problem.

TMMV005E - ERROR DELETING INITIAL RECORD (*)

The DELETE of the initial record failed. This should not generally occur. Review the file status code and

VSAM error information for the cause of the problem.

TMMV007I - FILE RESET SUCCESSFUL

The VSAM MS_DEFINITION file was reset. All existing records were deleted and the file is available for

use.

TMMV008I - FILE INITIALIZED OK

The VSAM MS_DEFINITION file was initialized correctly and is available for use.

TMMV009I - ENDED, RC = ####

The TMMVIMSD program has ended with the specified return code. The following return codes are valid:

0000 - Normal, program ran successfully.

0004 - VSAM file was already initialized. No changes made.

0008 - Error occurred in processing. Review error messages for the problem.

(*) The TMMVIMSD program displays the file status code and VSAM error information when

appropriate. Please refer to the COBOL II manuals for a description of file status codes. For VSAM

error information, refer to the appropriate VSAM manuals.

API Result Codes 99

TABLES/MM Reference Manual Appendix B

Appendix B - API Result Codes

The API always returns a result code in the Interface Control Area to the calling program. There are two

results that mean the function was executed correctly and the others mean the function was not executed

correctly. The following summarizes all result codes:

Valid Codes - Function completed

OK - The function executed normally. For a GET request a record was returned in the record I/O area.

END - A GET request executed normally, but no record is returned. A record matching the criteria was

not found, the end of the table was reached for a forward request or the start of the table was

reached for a backward request. For STGF/STGN, there are no more tables.

Invalid Codes - Function did not complete

DUPREC - When adding or updating a row using TADD or TUPD, a duplicate row was found.

For tables that do not allow duplicates, this is an error.

EFFERROR - Effectivity error, occurs when a GEFF function is requested for a table that was not

defined for effectivity.

ERRCALLM - The interface module, TMMINT, was called incorrectly. This occurs if the interface

module is statically linked with the calling program. The API must be called

dynamically at all times.

ERRCMPR - Error during compress function. This is caused if a compress is already in progress for

the dataspace being processed.

ERRNODS - Error accessing a dataspace. The default dataspace or the one specified on the TBLDID

DD card is not active. Either start the dataspace or turn off dataspace processing using a

'//TBLDID DD DUMMY' card with blanks for the id. This result only occurs on the

first call to the API when it tries to connect to the dataspace, even if the LOC-FLAG is

set to 'L'.

ERRELOAD - Error during table reload. This occurs for a GETN, GETP, GETS, or GETR that is

executed for a table that has been reloaded after the original call that set the table

position. After the reload, the table position may be invalid due to records being added

prior to the current position.

ERREXPTT- When adding a row to a transient table using TADD, the table could not be expanded to

add the row. Make sure free space was specified on the TMAK requerst to allow

expansion.

ERRGTMEM - A request for memory (CICS or OS Getmain) failed.

ERRLDINT- Error when issuing a load for module TMMINT to make it resident. This should only

occur if the module is not available and it was statically linked with the calling module

(which would be invalid also).

API Result Codes 100

TABLES/MM Reference Manual Appendix B

ERRSAVTT- When saving a transient table using TSAV, the table could not be saved back to the

dataspace. Make sure the dataspace has enough space left or was not stopped.

ERRVIEW - Error creating a view dynamically. This result code occurs in R2.0 only.

ERRVWCNV- When converting columns in a complex view, the conversion failed. This occurs if

invalid data is passed in the I/O area (eg. non packed data for a packed decimal column

or an invalid date).

FNCINVLD - The function code passed to the API was invalid. Refer to the list of valid function

codes in Section 5. Some function codes are part of optional components of

TABLES/MM and may not be installed or available.

GMERRSAV- A request for memory (CICS or OS Getmain) failed when trying to allocate a save area

for a table.

GMERRTT - A request for memory (CICS or OS Getmain) failed when trying to allocate memory for

a transient table during TMAK processing.

NOTOK - The function could not be processed for several reasons. The current table position was

invalid. This occurs for example if a GETN or GETP function is executed before a

function that sets the position (eg. GETF, GETL, GETP or GEFF). For a GETL or

GETG, if the table has no sort fields and more than one search field was specified,

NOTOK is returned. Also, for transient table processing, NOTOK is returned when a

record is not found when deleting or updating or when a duplicate key is found when

adding or updating a row.

TBLINVLD - The table specified could not be found. It was not loaded or possibly loaded into a

different dataspace than the task was set up to access. For the LOAD function, it means

that the table was not found or an error occurred in accessing it.

Date Formats 101

TABLES/MM Reference Manual Appendix C

Appendix C - Date Formats

When defining tables or views, the FORMAT parameter requires a date format code and on the Effectivity

Definition panel, the Date Format field is used to enter the code that specifies the format of the break-in and

break-out dates. The format codes allowed are shown in the following table with the date layout and an

example. For effectivity, any format is acceptable, but the date column itself must be a DB2 date field or a

character field that can be sorted correctly (ie. the date must be in year-month-day format).

Figure C-1: Date Format Codes

 Code

Date Format

Example

 1

MMDDYY

123113

 2

MMDDYYYY

12312013

 3

DDMMYY

311213

 4

DDMMYYYY

31122013

 5

YYMMDD

131231

 6

YYYYMMDD

20131231

 7

MM/DD/YY

12/31/13

 8

MM/DD/YYYY

12/31/2013

 9

DD/MM/YY

31/12/13

 A

DD/MM/YYYY

31/12/2013

 B

YY/MM/DD

13/12/31

 C

YYYY/MM/DD

2013/12/31

 D

YYDDD

13365

 E

YYYYDDD

2013365

 F

YY/DDD

13/365

 G

YYYY/DDD

2013/365

 H

DD-MMM-YY

31-DEC-13

 I

DD-MMM-YYYY

31-DEC-2013

 J

MON DD,YYYY

DECEMBER 31, 2013

 K

MMM DD,YYYY

DEC 31, 2013

 L

YYYY-MM-DD

2013-12-31

 M

DD.MM.YYYY

31.12.2013

 S

TIMESTAMP

2013-12-31-00.00.00.000000

TABLES/MS Interface 102

TABLES/MM Reference Manual Appendix D

Appendix D - TABLES/MS Interface

TABLES/MS is a component of the TABLES Management System from SSI that manages, controls and

maintains tables in IMS/DLI databases, VSAM databases, or user VSAM files. TABLES/MM allows tables

maintained by TABLES/MS to be loaded into dataspaces and/or local memory. Once loaded, the tables can

be processed by the API exactly in the same way as for DB2 tables.

Transactions running online under IMS or CICS can load and process all allowable tables by using the

standard API function codes. Tables can be loaded, freed, searched, etc. by calling the interface module.

The only difference in the call is the table name.

Applications running in batch, that do not need to load tables, can run without any JCL changes and use the

API in exactly the same was as for DB2 tables. That is, DB2 tables, TABLES/MS tables or User VSAM

tables can be searched and processed by calling the API with no application changes. However, if the tables

are to be loaded by the application, into a dataspace or local memory, JCL changes may be required so that

the API has access to the databases and/or files needed to load the tables.

In all cases, when a table is to be loaded into memory (dataspace or local), the API automatically detects

what type of table to load based on the format of the table name. It will then load the correct I/O module

used to read the table's definition and data. It decides what type of table based on the following

specifications:

DB2 Tables - The table name can be from 3 to 36 characters and must be a valid DB2

table, alias or view. In addition, it must contain the AUTH-ID (eg.

creator id of the table) followed by a period. For example,

SSI.TALBLE1 or USER.RATETAB are valid names.

TABLES/MS Tables - The table name must be 1 to 8 alpha-numeric characters. For example,

TABLE1 and RATETAB are valid names. The first character must be

alphabetic. TABLES/MS tables are the only table names that do not

have a period in them.

User VSAM Tables - The table name is 6 to 36 characters and must be formatted as follows:

VSAM.table-name

where 'VSAM.' is required to distinguish it from a DB2 table and 'table-

name' is the name of a table defined into TABLES/MS. The table-name

may be the DD name of the VSAM file or the FCT name from CICS for

online transactions. Refer to the TABLES/MS Reference Guide for

more information on defining VSAM tables.

TABLES/MS Interface 103

TABLES/MM Reference Manual Appendix D

Compatibility with TABLES/MS TABLP Modules

The TABLP modules (eg. DLITABLP, VISTABLP, etc.) that came with the TABLES/MS package will

still work correctly. However, they do not interface or communicate to the TABLES/MM API

or dataspaces. Therefore, to allow older applications to continue to work and use dataspaces, the compatible

TABLP modules or the routines they call are included with TABLES/MM. By simply including the

TABLES/MM load library before the TABLES/MS library in any STEPLIB of JCL that uses TABLES/MS,

the new routines will be invoked. As a result, all processing is handled by TABLES/MM as if the

applications were calling it directly. However, when implementing TABLES/MM this was, the following

should be taken into consideration:

 All tables must be processed from either local memory or dataspaces. By using the TBLDID

DD card, only local memory is used, otherwise a dataspace is used. Since the TABLES/MS

routines have different parameters, they can not specify the LOC-FLAG to use local memory

for some tables and dataspaces for others.

 If loading tables from applications, the FREE SPACE options can not be used.

 The TABLES/MS TABLP modules are less efficient than the TABLES/MM API. The API is

more streamlined and requires less overhead.

 The TABLES/MM API is a consistent interface no matter how it's called. The parameters are

the same no matter what program calls it, making it easier to use.

Overall, it is recommended that any new applications or old ones being changed be converted to use the

TABLES/MM interface rather than any of the TABLES/MS modules.

Online Facilities

The Online Facilities can be used for monitoring and controlling TABLES/MS tables that are loaded in a

dataspace. However, TABLES/MS tables can not be loaded with the online facilities and the Effectivity

Definition can not be used. These features are limited to DB2 tables and will not work with TABLES/MS

tables. However, once TABLES/MS tables are loaded into a dataspace, they can be browsed, freed or

selected.

Batch Utilities

The Batch Utilities, TMMUTIL and TMMRPT are fully compatible and support TABLES/MS tables.

TMMRPT will list all TABLES/MS tables in all dataspaces in the same way as for DB2 tables. Once in a

dataspace, no distinction is made between the tables.

TABLES/MS Interface 104

TABLES/MM Reference Manual Appendix D

The TMMUTIL utility will also work with any TABLES/MS supported tables. The only difference is JCL

used to run it. The installation JCL library has several sample JCL members that can be used to process

TABLES/MS tables in the same way as DB2 tables are processed. All control codes are supported except

SFLD (TABLES/MS tables are always sorted by the Sequence Field). The following sample JCL members

are supplied:

 JCLUTILB - Executes TMMUTIL using IMS BMP processing. This allows TABLES/MS-

IMS tables and DB2 tables to be loaded.

 JCLUTILD - Executes TMMUTIL using IMS DLI processing. It calls the DB2 program to

allow either TABLES/MS-IMS or DB2 tables to be loaded.

 JCLUTILI - Executes TMMUTIL using IMS DLI processing with no DB2 support. This

allows just TABLES/MS-IMS tables to be loaded.

 JCLUTILV - Execute TMMUTIL using the standard TMMUTIL proc with the addition of

TABLES/MS-VSAM DD cards. This allows TABLES/MS for CICS and user

VSAM files to be loaded.

Application Programming Interface

As recommended above, the TABLES/MM API should be used in place of the TABLE/MS pre-load

interface routines. The API fully supports all TABLES/MS tables (IMS, CICS, VSAM), is more efficient,

and has more capabilities. Calling the API for TABLES/MS tables is exactly the same as shown in Section

5 with one exception. For applications that will be loading TABLES/MS IMS tables either explicitly or

implicitly (using auto-load), then the four TABLES/MS IMS PSB's must be passed (the IMS LT-PCB is no

longer required). The call format in this case would look like the following:

 CALL TMM-INT-MODULE USING INTERFACE-CONTROL-AREA,
 INTERFACE-RECORD-IO-AREA,
 INTERFACE-SORT-AREA,
 PCB-1, PCB-2, PCB-3, PCB-4.

Where PCB1 through PCB4 are the TABLES/MS pcb's and the same as passed to the TABLP routines

(excluding the LT-PCB). For TABLES/MS VSAM tables and any call that will not be loading tables, the

standard call can be used. Also, the SORT-AREA is still optional in all cases depending on the ICA-SORT-

FLAG field.

Reason Codes 105

TABLES/MM Reference Manual Appendix E

Appendix E - Reason Codes

The TABLES/MM API, TMMINT, returns a reason code in the Interface Control Area after each request.

Currently, only those for the LOAD and Transient functions have been defined. The following is a list of

each reason code, a description of what causes it, and possible actions to take.

LOAD Function Reason Codes

004 - The table or view was not found.

Action: Make sure the name is spelled correctly. If not a DB2 table, make sure it is correctly

defined to TABLES/MM as a table or view.

201 - A getmain failed trying to initially allocate memory for the table. Tables are loaded into the local

region before being moved to a dataspace.

Action: Make sure the region size is large enough.

202 - The connection to DB2 could not be made. This should only occur in batch or TSO when not

running under the DSN command (eg. using DB2 Call Attach).

Action: Make sure the correct DB2 plan is specified and that you have authority to execute it and

check to make sure that the plan was bound correctly.

203 - A view could not be created in the dataspace or local memory.

Action: Check the dataspace to make sure there is enough directory entries and space available.

Also, possibly a memory problem. Make sure the region size is large enough.

204 - The WHERE Clause passed on a LODW function was too large. The maximum size allowed is

1000 bytes.

Action: Make sure the length is correctly set for the WHERE clause. The length is a two byte area

preceding the where clause. Also, make sure the parameters passed to TMMINT are

correct.

205 - A getmain failed while loading the table. For large tables, memory is reallocated after a certain

size.

Action: Make sure the region size is large enough.

206 - A getmain failed while building an index.

Action: Make sure the region size is large enough.

207 - While building a unique index, a duplicate entry was found.

Action: Check the index to make sure it was defined correctly and check the table to make sure it

does not have any incorrect rows.

Reason Codes 106

TABLES/MM Reference Manual Appendix E

208 - The table could not be loaded into the dataspace.

Action: Check the dataspace to make sure there is enough directory entries and space available.

Also, make sure the region size is large enough.

220 - Error trying to load an I/O interface module. Only occurs for TABLES/MS tables. If a table is not

found in the DB2 catalog or in the MS_DEFINITION table, then a check is made to see if it is an

old style MS table.

Action: If loading an MS table, make sure the TABLES/MM load library is available to the job.

Also, check to make sure the table name is correct.

221 - No IMS PCB's were passed and attempting to load a TABLES/MS table. (See reason code 220 for

additional information).

Action: If loading an MS table, make sure the PCB's are passed and the job is run under the IMS

region controller. Also, check to make sure the table name is correct.

222 - The table was not found or an error occurred trying to get the TABLES/MS definition for the table

being loaded.

Action: Check to make sure the table exists. If loading an IMS TABLES/MS table, make sure the

correct PCB's are passed and the databases are available. If loading a VSAM

TABLES/MS table, make sure the TBLDD06 - 09 files are allocated correctly and are

available (eg. not allocated and open to CICS).

223 - A getmain failed trying to allocate memory for the TABLES/MS table.

Action: Make sure the region size is large enough.

226 - Error trying to read a TABLES/MS record.

Action: The ICA-PROGRAM-NAME field passed in the ICA must be non-blank. This is

required by TABLES/MS processing. Also, if loading an IMS TABLES/MS table, make

sure the correct PCB's are passed and the databases are available. If loading a VSAM

TABLES/MS table, make sure the TBLDD06 - 09 files are allocated correctly and are

available (eg. not allocated and open to CICS).

301 - Internal error trying to access MS_DEFINITION.

Action: Call technical support.

302 - SQL Error trying to read the MS_DEFINITION table.

Action: Check the SQL CODE for the cause of the problem.

401 - SQL Error trying to read VIEW definition records from MS_DEFINITION.

Action: Check the SQL CODE for the cause of the problem.

402 - SQL Error trying to read VIEW column records from MS_DEFINITION.

Reason Codes 107

TABLES/MM Reference Manual Appendix E

Action: Check the SQL CODE for the cause of the problem.

403 - The view being loaded is inconsistent with the base table.

Action: Make sure the table has not changed since the view was defined. List the view using

TMMDEFN and compare the columns to the base table. Redefine the view to match the

table.

404 - A column in the view being loaded does not match any column in the base table.

Action: Make sure the table has not changed since the view was created. List the view using

TMMDEFN and compare the columns to the base table. Re-create the view to match the

table.

405 - SQL Error trying to read an EFF record from MS_DEFINITION.

Action: Check the SQL CODE for the cause of the problem.

406 - SQL Error trying to read an ORD record from MS_DEFINITION.

Action: Check the SQL CODE for the cause of the problem.

407 - The Break-in or Break-out column defined in the effectivity definition record was not found in the

table.

Action: Make sure the table has not changed since effectivity was defined. Using the on-line

System, check the B/I and B/O column names to make sure they are correct. Re-define

effectivity for the table.

408 - SQL Error trying to read INDEX records from MS_DEFINITION.

Action: Check the SQL CODE for the cause of the problem.

409 - SQL Error trying to read INDEX columns from MS_DEFINITION.

Action: Check the SQL CODE for the cause of the problem.

410 - A column in the index for the table being loaded does not match any column in the table.

Action: Make sure the table has not changed since the index was created. List the indexes for the

table using TMMDEFN and compare the columns to those in the table. Re-create the

index to match the table.

411 - An error occurred trying to setup the key compare instructions for an index.

Action: Check to make sure the region size is large enough.

412 - SQL Error trying to read table column records from MS_DEFINITION.

Action: Check the SQL CODE for the cause of the problem.

Reason Codes 108

TABLES/MM Reference Manual Appendix E

413 - SQL Error trying to build the internal table definition when processing the DB2 catalog or the

MS_DEFINITION table.

Action: Check the SQL CODE for the cause of the problem.

414 - The base table for the view being loaded was not found.

Action: Make sure the view is defined correctly and that the table it is associated with is correct

and exists. This should only occur if a base table is deleted after a view was defined.

451 - Internal Error trying to load a VSAM table.

Action: Call Technical Support.

452 - Error trying to create an ACB for a VSAM table.

Action: Make sure the region size is large enough or call Technical Support.

453 - Error trying to create an RPL for a VSAM table.

Action: Make sure the region size is large enough or call Technical Support.

454 - Error trying to open a VSAM file.

Action: Make sure the VSAM file is correctly allocated to the job. The DDNAME for the file
should be the same as the table name suffix. Also, make sure the file allocated is a valid
VSAM KSDS.

455 - Internal Error trying to load a VSAM table.

Action: Call Technical Support.

456 - Internal Error trying to load a VSAM table.

Action: Call Technical Support.

457 - A VSAM Logical Error occurred reading a VSAM file or a CICS READNEXT failed.

Action: Make sure the VSAM file is correctly allocated and is a valid VSAM KSDS dataset. For
CICS make sure the file is available and defined correctly.

458 - A VSAM Physical Error occurred reading a VSAM file.

Action: Make sure the VSAM file is correctly allocated and is a valid VSAM KSDS dataset.

459 - An Unknown Error occurred reading a VSAM file.

Action: Make sure the VSAM file is correctly allocated and is a valid VSAM KSDS dataset.

461 - A CICS Inquire failed for the VSAM file being loaded.

Action: Make sure the VSAM file is correctly defined to CICS and that the user loading the table
is authorized to access it.

462 - The VSAM file being loaded was not defined to CICS.

Action: Make sure the VSAM file is correctly defined to CICS.

Reason Codes 109

TABLES/MM Reference Manual Appendix E

463 - When loading a VSAM file under CICS, the file was not open and an attempt to open it failed.

Action: Make sure the VSAM file is correctly defined to CICS and that the user loading the table
is authorized to access it. Also, make sure the file has not been disabled and that it is not
in use by another job.

464 - A CICS STARTBR failed when trying to read a VSAM file.

Action: Make sure the VSAM file is correctly defined to CICS to allow BROWSE and that the
user loading the table is authorized to access it.

471 - Internal Error trying to execute dynamic SQL.

Action: Call Technical Support.

472 - SQL Error trying to prepare a dynamic SQL statement.

Action: Check the SQL CODE for the cause of the problem. For a LODW function, make sure the
WHERE clause is correct.

473 - SQL Error trying to execute a dynamic SQL statement.

Action: Check the SQL CODE for the cause of the problem. For a LODW function, make sure the
WHERE clause is correct.

474 - SQL Error trying to open a cursor to fetch the DB2 table.

Action: Check the SQL CODE for the cause of the problem. For a LODW function, make sure the
WHERE clause is correct.

475 - SQL Error trying to fetch a row.

Action: Check the SQL CODE for the cause of the problem. For a LODW function, make sure the
WHERE clause is correct.

476 - Error trying to process the columns for the DB2 table.

Action: Check the DB2 table to make sure it was defined correctly and supported by
TABLES/MM or call Technical Support.

Transient Function Reason Codes

604 - The table specified is not currently loaded into memory.

Action: Make sure the name is spelled correctly. Check the dataspace-id on the TBLDID DD card

in the JCL to make sure the correct dataspace is being accessed or if processing a local

table, make sure the table has been loaded.

605 - Invalid table for TMAK.

Action: When using TMAK, the table name can not reference a view or alias (simple view) of a

table. Also, make sure the table has not been freed from the dataspace or local memory.

Reason Codes 110

TABLES/MM Reference Manual Appendix E

610 - TADD failed because there is no free space for the specified table.

Action: If adding records, then a free space value must be specified in the ICA on the TMAK

request issued prior to the TADD.

611 - TUPD failed because the record was not found.

Action: When updating a record, the first (old) Record IO area passed to TMMINT must contain

the exact record to be updated. Use a GET request to find the correct record and return it

on the TUPD function.

612 - TDEL failed because the record was not found.

Action: When deleting a record, the Record IO area passed to TMMINT must contain the exact

record to be deleted. Use a GET request to find the correct record and return it on the

TDEL function.

613 - Transient Function specified but no prior TMAK.

Action: A TMAK function must be executed prior to any other Transient function. Make sure a

TMAK is issued and the result code returned was OK.

Negative Reason Codes

A negative reason code means that the reason code field in the ICA has two values in it. The first two bytes

represent an SQL code and the last two represent the actual reason code. Refer to the description of the ICA

in Section 5.

For the SQL code, the value is a result of a call to DB2 or a VSAM access method request. If the value is

from -9000 to -9999, the SQL code represents an error when processing a VSAM file in batch or through

CICS. Otherwise, the value is a DB2 SQL code and should be checked in the DB2 Messages and Codes

manual.

For VSAM errors, only the two right-most digits are meaningful (eg. ignore the -90). In the case of batch

processing, the two digits represent the COBOL or COBOL II file status code. Refer to the appropriate

COBOL manual for a description of what the value means. In the case of CICS processing, the two digits

represent the CICS EIBRESP value. Refer to the appropriate CICS manual for a description of the possible

EIB response values.

INDEX X-1

TABLES/MM Reference Guide Index

 INDEX

9

-9000 -- 64

A

Abend-- 13, 15, 24, 46, 61

ABND --- 46

Access registers -- 11

Accesses --------------------- 19, 22, 23, 25, 26, 51, 65, 77, 78

Add -- 27, 39, 74, 75, 77

Addressing mode -- 57

Alias -- 28, 35, 40, 48

Amode --- 57

APF -- 12, 13

API -- 6, 8, 14, 19, 23, 25, 26, 29, 30, 31, 40, 55, 56, 57, 58,

59, 61, 64, 66, 70, 73, 74, 76, 77, 78

Application Programming Interface ------------------------- 53

ASC -- 38, 42

Ascending ------------------------------------- 24, 28, 42, 48, 60

ASM --- 38, 39

Assembler --- 11, 39

Auto-load --- 56, 70

B

Base table ------------------- 35, 36, 40, 42, 43, 60, 67, 74, 77

Batch facilities -- 8, 56

Between --------------------- 11, 35, 37, 46, 47, 48, 67, 68, 69

Binary -------------- 35, 39, 40, 41, 42, 47, 60, 64, 65, 66, 69

Blank card -- 14, 45

Break-in -- 27, 28, 61, 62

Break-in date --- 27, 28

Break-out--- 28, 61, 62

Break-out date --- 28, 61, 62

Browse -- 19, 23, 25, 37, 45

C

CH --- 39, 40

Character - 21, 38, 39, 40, 42, 43, 45, 47, 57, 58, 59, 66, 67,

68

CICS ---------------- 14, 19, 29, 31, 38, 64, 74, 76, 77, 81, 82

CICS Enq --- 76

CMPR --- 30, 61

Cob -- 39

Cobol -- 38, 39, 57, 58, 64

Cols -- 51

Column --- 14, 26, 27, 28, 37, 38, 39, 40, 42, 43, 45, 48, 49,

60, 62, 77

Columns -- 14, 25, 26, 27, 28, 35, 37, 39, 40, 41, 42, 43, 45,

48, 65, 74, 77

Comment card --- 14, 37, 45

Commit -- 38, 44

Common dataspace ------------------------------------- 5, 11, 12

Complex view ------------------ 35, 36, 40, 41, 60, 67, 74, 77

Complex views --- 35, 67

Compress -------------------------------------- 12, 23, 24, 61, 62

Control card - 13, 14, 16, 22, 24, 35, 36, 37, 38, 39, 44, 45,

46, 47, 48, 50

Control cards --------------- 14, 16, 36, 37, 38, 39, 44, 45, 46

Control code --- 5, 45, 46

Copy ---------------------------------- 38, 39, 73, 74, 75, 77, 78

Copybook --- 39

Create index -- 42

Create table --- 38, 39

Create view --- 40

D

Dataspace id ---------------------------------- 13, 15, 50, 55, 56

Dataspace setup -- 9

Dataspace utility -------------------------------------- 19, 20, 21

Dataspace-id -- 15, 25

Date format -- 28, 39, 40

DBRM --- 70

DCPU --- 46, 47

DDNAME -- 38, 39

Decpos-- 38, 39, 40

Delete --------------------------------------27, 28, 43, 74, 75, 77

Desc -- 13, 14, 15, 38, 42

Descending -- 24, 28, 48, 60

DID ----------------- 13, 15, 16, 22, 25, 46, 47, 49, 50, 51, 64

Directory -- 11, 12, 13, 14, 19, 22, 23, 24, 25, 26, 36, 51, 64

Disp --13, 46, 47, 48, 82, 83

E

Echo -- 46, 47, 49

Effectivity ---------------------------------19, 20, 25, 26, 27, 28

Effectivity definition --------------------------------- 19, 20, 27

Examples ------------------------ 15, 16, 31, 43, 49, 68, 76, 83

Execkey --- 14

F

FCT -- 38, 82

Field-array -- 60

Field-count -- 60

Field-name -- 60

Format 14, 25, 27, 28, 31, 35, 37, 38, 39, 40, 41, 42, 45, 65,

67, 68, 69, 77

Free -- 12, 13, 19, 22, 23, 24, 25, 26, 29, 30, 31, 37, 46, 47,

48, 59, 61, 62

INDEX X-2

TABLES/MM Reference Guide Index

Free space ------------------- 12, 22, 24, 26, 30, 31, 46, 47, 59

FSPC -- 46, 47

Full-screen mode --- 19, 29

Func --- 46, 47, 48, 49, 50

Function-code -- 58, 67

G

GEFF --- 28, 61, 62

GETE --------------------------------- 59, 61, 62, 63, 66, 67, 69

GETF ------------------------ 19, 30, 46, 48, 49, 61, 62, 63, 66

GETG --- 61, 62, 63, 66

GETL --- 61, 62, 63, 66

GETN --------------------------------- 48, 49, 56, 61, 63, 65, 67

GETP --------------------------------------56, 61, 62, 63, 65, 67

GETQ --------------------------------------59, 61, 63, 66, 67, 69

GETR --- 61, 63, 65, 66

GETS --------------------------------- 48, 49, 61, 63, 65, 66, 73

H

Help --------------------------------- 5, 8, 19, 20, 21, 23, 27, 44

Hex -- 46, 48, 49

I

ICA -------- 30, 55, 56, 57, 58, 59, 60, 64, 67, 76, 77, 78, 83

ICA-reserved --- 58

ID=00 --- 47, 49, 55, 56

IDCAMS -- 81, 83

Index ----------- 27, 28, 35, 38, 41, 42, 43, 60, 62, 77, 81, 82

Index id -- 42

ISA -- 55, 57, 60

J

JCL ---- 13, 21, 36, 44, 47, 49, 51, 55, 56, 57, 64, 70, 82, 83

K

Key columns -- 28

Key fields -- 19, 28, 42

Key=8 --- 13, 14

Key=9 --- 14

L

Line commands -- 23, 25

Line mode -- 19, 29, 31

List --------- 19, 21, 22, 23, 26, 29, 30, 35, 38, 43, 51, 59, 64

Load function --- 47, 48

Load time --- 23, 51

Loaded by -- 25, 56, 57

Local memory 5, 6, 7, 19, 29, 30, 31, 47, 55, 56, 59, 61, 62,

64, 65, 73, 74, 75, 77, 78

Loc-flag -----------------------------------30, 55, 56, 58, 59, 77

Lock -- 74, 76, 78

Lock a table --- 74

LODW --- 48, 49, 60, 61, 64

M

Mbrname -- 38, 39

Memory used --- 25

Messages --- 19, 81, 83

MS_Definition ---------------------------22, 44, 56, 70, 81, 82

MVS Enq --- 76

N

NOC --- 43

Nocolumns -- 38, 43

NU --- 39, 40

Numeric --------------------- 13, 35, 39, 40, 42, 48, 59, 66, 67

O

Online facilities --- 8, 17

Operator fields --- 68

Order------- 11, 14, 19, 24, 27, 28, 35, 41, 42, 46, 48, 60, 63

Order-by --- 60

Output --------------------------- 37, 43, 45, 46, 47, 50, 51, 59

Overhead -- 24, 77

P

PA --- 39, 40, 51

Packed decimal --- 66

Position -- 46, 62, 63, 65, 66

Primary 5, 19, 20, 21, 23, 24, 27, 28, 38, 39, 41, 42, 60, 61,

62, 65, 67

Primary commands -- 23

Primary index -------------------------------- 19, 41, 42, 60, 62

Primary menu-------------------------------------- 20, 21, 23, 27

Production dataspaces ------------------------------------- 19, 55

Program-name -- 58

R

Range test --- 67, 68

Reason Code -- 64

Load Function --- 105

Negative -- 110

Transient Functions--------------------------------------- 109

RECCNT -- 26

Record size -- 45, 48, 60

RECSZ -- 26, 51

Replace --- 38, 39, 43, 82

Report --- 51

Reset --- 23, 25, 46, 82, 83

Residency mode -- 57

Result codes --------------------------------------- 58, 59, 61, 74

Result-code --- 58, 64

Retrieve --------------------- 5, 6, 7, 27, 28, 35, 40, 60, 65, 67

INDEX X-3

TABLES/MM Reference Guide Index

Return code --- 83

RMode -- 57

Rollback --- 44

S

Sampapp2 --- 68

Sampapp3 --- 76

Sample program --------------------------------------- 57, 68, 76

Save --67, 73, 74, 75, 77, 78

Scroll --- 21, 22, 29

Secondary index --- 41, 60

Select ------------------------ 20, 21, 22, 23, 25, 28, 46, 60, 70

Serialize --- 74, 76

SFLD -- 46, 48

SIB --- 65

Simple view-------------------------------35, 36, 40, 41, 74, 77

Sort fields -- 8, 48, 62

Sort-flag -- 58, 59, 60

SQL codes -- 31

SQLcode --- 58, 59, 64

SSSP --- 14

Start date -- 27

Started task --- 12

Statistics information block ---------------------------------- 64

STGF --------------------------------- 19, 30, 31, 49, 61, 64, 65

STGN --- 61, 64, 65

Stop date --- 6, 19

Subroutine linkage --- 57

T

TABL --- 46, 48, 49, 50

Table name--- 14, 23, 25, 27, 28, 30, 35, 43, 46, 48, 50, 51,

58, 77

Tables/ms -- 56, 57, 81

TADD -- 74, 75, 76, 77

TBLDID --------------------------------------- 47, 55, 56, 59, 64

TBLDID?? -- 47

TBLMSDEF --------------------------------------- 57, 70, 82, 83

TDEL --- 74, 75, 76, 77

TLOK --- 74, 75, 76, 78

TMAK --- 73, 74, 75, 76, 77

TMMDEFN--------------------- 19, 35, 36, 37, 44, 60, 82, 83

TMMINT ----------------------- 30, 35, 57, 59, 66, 67, 68, 69

TMML --- 29, 31

TMMLOAD -- 36, 44

TMMRPT --- 35, 51

TMMSTART --------------------------------- 12, 13, 14, 15, 16

TMMUTIL ---------------------- 35, 44, 45, 50, 51, 70, 82, 83

TMMVIMSD --- 82, 83

Total bytes -- 26, 51

Transient table ------------------------------------- 71, 74, 75, 76

TSAV --------------------------------------73, 74, 75, 76, 77, 78

TUNL --- 74, 75, 76, 78

TUPD --- 74, 75, 76, 77

U

Unique --- 27, 28, 38, 42, 75

Unique index -- 27, 28, 75

Unlock --- 74, 75

Unused space --- 24

Update -------------------------------------27, 73, 74, 75, 76, 77

Updating in-memory tables ----------------------------------- 73

Userid-- 26, 65

V

View name --- 28, 35, 43, 48

VSAM component --- 57

VSAM ksds -- 41, 81, 82, 83

VSAMDEF --- 83

W

WHER -- 46, 48, 49

Where clause -------------------------------------- 48, 60, 61, 64

